Evolutionary Design of Fuzzy Classifiers Using Information Granules

  • Do Wan Kim
  • Jin Bae Park
  • Young Hoon Joo
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3809)


A new GA-based methodology using information granules is suggested for the construction of fuzzy classifiers. The proposed scheme consists of three steps: selection of information granules, construction of the associated fuzzy sets, and tuning of the fuzzy rules. First, the genetic algorithm (GA) is applied to the development of the adequate information granules. The fuzzy sets are then constructed from the analysis of the developed information granules. An interpretable fuzzy classifier is designed by using the constructed fuzzy sets. Finally, the GA are utilized for tuning of the fuzzy rules, which can enhance the classification performance on the misclassified data (e.g., data with the strange pattern or on the boundaries of the classes).


Genetic Algorithm Feature Selection Fuzzy System Fuzzy Rule Information Granule 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Joo, Y.H., Hwang, H.S., Kim, K.B., Woo, K.B.: Linguistic model identification for fuzzy system. Electron. Letter 31, 330–331 (1995)CrossRefGoogle Scholar
  2. 2.
    Joo, Y.H., Hwang, H.S., Kim, K.B., Woo, K.B.: Fuzzy system modeling by fuzzy partition and GA hybrid schemes. Fuzzy Set and Syst. 86, 279–288 (1997)CrossRefGoogle Scholar
  3. 3.
    Zadeh, L.A.: Fuzzy sets. Informat. Control 8, 338–353 (1965)zbMATHCrossRefMathSciNetGoogle Scholar
  4. 4.
    Abe, S., Thawonmas, R.: A fuzzy classifier with ellipsoidal regions. IEEE Trans. Fuzzy Systems 5, 358–368 (1997)CrossRefGoogle Scholar
  5. 5.
    Wang, L.X., Mendel, J.M.: Generating fuzzy rules by learning from examples. IEEE Trans. Syst., Man, Cybern. B 22, 1414–1427 (1992)CrossRefMathSciNetGoogle Scholar
  6. 6.
    Ishibuchi, H., Nozaki, K., Yamamoto, N., Tanaka, H.: Selecting fuzzy if-then rules for classification problems using genetic algoritms. IEEE Trans. Fuzzy Systems 3, 260–270 (1995)CrossRefGoogle Scholar
  7. 7.
    Thawonmas, R., Abe, S.: A novel approach to feature selection based on analysis of class regions. IEEE Trans. Syst., Man, Cybern. B 27, 196–207 (1997)CrossRefGoogle Scholar
  8. 8.
    Abe, S., Lan, M.S.: A method for fuzzy rules extraction directly from numerical data and its application to pattern classification. IEEE Trans. Fuzzy Systems 5, 358–368 (1995)CrossRefGoogle Scholar
  9. 9.
    Lee, H.M., Chen, C.M., Chen, J.M., Jou, Y.L.: An efficient fuzzy classifier with feature selection based on fuzzy entropy. IEEE Trans. Syst., Man, Cybern. B 3, 426–432 (1997)Google Scholar
  10. 10.
    Roubos, H., Setnes, M.: Compact transparent fuzzy models and classifiers through iterative complexity reduction. IEEE Trans. Fuzzy Systems 9, 516–524 (2001)CrossRefGoogle Scholar
  11. 11.
    Shi, Y., Eberhart, R., Chen, Y.: Implementation of evolutionary fuzzy systems. IEEE Trans. Fuzzy Systems 7, 109–119 (1999)CrossRefGoogle Scholar
  12. 12.
    Wu, T.P., Chen, S.M.: A new method for constructing membership functions and fuzzy rules from training examples. IEEE Trans. Syst., Man, Cybern. B 29, 25–40 (1999)CrossRefGoogle Scholar
  13. 13.
    Goldberg, D.E.: Genetic algorithms in searh, optimization, and machine learning. Addison-Wesley publishing company, Inc., Reading (1989)Google Scholar
  14. 14.
    Pedrycz, W., Bargiela, A.: Granular clustering: a granular signature of data. IEEE Trans. Syst., Man, Cybern. B 32, 212–224 (2002)CrossRefGoogle Scholar
  15. 15.
    Chen, S.M., Yeh, M.S., Hsiao, P.Y.: A comparison of similarity measures of fuzzy values. Fuzzy Sets Syst. 72, 79–89 (1995)CrossRefMathSciNetGoogle Scholar
  16. 16.
    Young, V.R.: Fuzzy subsethood. Fuzzy Sets Syst 77, 371–384 (1996)zbMATHCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  • Do Wan Kim
    • 1
  • Jin Bae Park
    • 1
  • Young Hoon Joo
    • 2
  1. 1.Yonsei UniversitySeoulKorea
  2. 2.Kunsan National UniversityKunsan, ChunbukKorea

Personalised recommendations