A Co-evolutionary Particle Swarm Optimization-Based Method for Multiobjective Optimization

  • Hong-yun Meng
  • Xiao-hua Zhang
  • San-yang Liu
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3809)


A co-evolutionary particle swarm optimization is proposed for multiobjective optimization (MO), in which co-evolutionary operator, competition mutation operator and new selection mechanism are designed for MO problem to guide the whole evolutionary process. By the sharing and exchange of information among particles, it can not only shrink the searching region but maintain the diversity of the population, avoid getting trapped in local optima which is proved to be effective in providing an appropriate selection pressure to propel the population towards the Pareto-optimal Front. Finally, the proposed algorithm is evaluated by the proposed quality measures and metrics in literatures.


Particle Swarm Optimization Extreme Point Pareto Front Multiobjective Optimization Pareto Optimal Solution 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Rosen, C., et al.: New methods for competitive coevolution. Evolutionary Computation 5(1), 1–29 (1997)CrossRefGoogle Scholar
  2. 2.
    Angeline, P.J., Pollack, J.B.: Competitive environments evolve better solutions for complex tasks. In: Forrest, S. (ed.) Proceedings ICGA 5, pp. 264–270. Morgan Kaufmann, San Francisco (1993)Google Scholar
  3. 3.
    Kennedy, J., Eberhart, R.: Particle swarm optimization. In: Proc. IEEE Int. Conf. On Neural Networks. Perth, pp. 1942–1948 (1995)Google Scholar
  4. 4.
    Eberhart, R., Kennedy, J.: A new optimizer using particle swarm theory. In: Proc. 6th Int.Symposium on Micro machine and Human Science, Nagoya, pp. 39–43 (1995)Google Scholar
  5. 5.
    Coello, C.C., Pulido, G.T., Lechuga, M.S.: Handling Multiple Objectives with Particle swarm optimization. IEEE Trans. On Evolutionary Computation 8(3), 256–279 (2004)CrossRefGoogle Scholar
  6. 6.
    Coello, C.C., Lechuga, M.S.: MOPSO: A proposal for multiple objective particle swarm optimization. In: Proc. Congr. Evolutionary Computation(CEC 2002), Honolulu, HI, May 2002, vol. 1, pp. 1051–1056 (2002)Google Scholar
  7. 7.
    Fieldsend, J.E., Singh, S.: A multiobjective algorithm based upon particle swarm optimization, an efficient data structure and turbulence. In: Proc. 2002 U.K. Workshop on Computational Intelligence, pp. 37–44 (September 2002)Google Scholar
  8. 8.
    Mostaghim, S., Teich, J.: Strategies for finding good local guides in Multiobjective Particle Swarm Optimization (MOPSO). In: Proc. 2003 IEEE Swarm Intelligence Symp., pp. 26–33. Indianapolis, IN (April 2003)Google Scholar
  9. 9.
    Parsopoulos, K.E., Vrahatis, M.N.: Particle swarm optimization method in multiobjective problems. In: Proc. 2002 ACM Symp. Applied Computing (SAC 2002), Madrid, Spain, pp. 603–607 (2002)Google Scholar
  10. 10.
    Deb, K.: Multi-Objective Optimization using Evolutionary Algorithms. John Wiley & Sons, Chichester (2001)zbMATHGoogle Scholar
  11. 11.
    Deb, K., Pratap, A., Agrawal, S., Meyarivan, T.: A Fast Elitist Non-Dominated Sorting Genetic Algorithm for Multi-Objective Optimization: NSGA-II. IEEE Trans. On Evolutionary Computation 6(2), 182–197 (2002)CrossRefGoogle Scholar
  12. 12.
    Zitzler, E.: Evolutionary Algorithms for Multi-objective Optimization: Methods and Applications.Ph.D. Thesis, Swiss Federal Institute of Technology (ETH), Zurich, Switzerland (November 1999)Google Scholar
  13. 13.
    Van Veldhuizen, D. A., lamont, G.B.: Multiobjective Evolutionary Algorithm Research: A history and analysis. Dept. Elec.Comput.Eng.,Graduate School of Eng., Air Force Inst. Technol., Wright-Patterson AFB, OH.Tech.Rep.TR-98-03 (1998)Google Scholar
  14. 14.
    Schott, J.R.: Fault tolerant design using single and multicriteria genetic algorithm optimization.M.S. thesis,Dept.Aeronautics and Astronautics, Massachusetts Inst.Technol.,Cambridge, MA (May 1995)Google Scholar
  15. 15.
    Van Veldhuizen, D.A.: Multiobjective evolutionary algorithms: Classifications, analyzes, and new innovations. Ph.D. dissertation, Dept. Elec. Compt. Eng., Graduate School of Eng., Air Force Inst.Technol., Wright-Patterson AFB,OH (May 1999)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  • Hong-yun Meng
    • 1
  • Xiao-hua Zhang
    • 2
  • San-yang Liu
    • 1
  1. 1.Dept.of Applied Math.XiDian UniversityXianChina
  2. 2.Institute of Intelligent Information ProcessingXiDian UniversityXianChina

Personalised recommendations