Skip to main content

Structural Abstraction Experiments in Reinforcement Learning

  • Conference paper
AI 2005: Advances in Artificial Intelligence (AI 2005)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 3809))

Included in the following conference series:

Abstract

A challenge in applying reinforcement learning to large problems is how to manage the explosive increase in storage and time complexity. This is especially problematic in multi-agent systems, where the state space grows exponentially in the number of agents. Function approximation based on simple supervised learning is unlikely to scale to complex domains on its own, but structural abstraction that exploits system properties and problem representations shows more promise. In this paper, we investigate several classes of known abstractions: 1) symmetry, 2) decomposition into multiple agents, 3) hierarchical decomposition, and 4) sequential execution. We compare memory requirements, learning time, and solution quality empirically in two problem variations. Our results indicate that the most effective solutions come from combinations of structural abstractions, and encourage development of methods for automatic discovery in novel problem formulations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Sutton, R.S., Barto, A.G.: Reinforcement Learning: An Introduction. MIT Press, Cambridge (1998)

    Google Scholar 

  2. Clark, A., Thornton, C.: Trading spaces: Computation, representation, and the limits of uninformed learning. Behavioral and Brain Sciences 20, 57–66 (1997)

    Article  Google Scholar 

  3. Utgoff, P.E., Stracuzzi, D.J.: Many-layered learning. In: Neural Computation. MIT Press Journals, Cambridge (2002)

    Google Scholar 

  4. Ashby, R.: Introduction to Cybernetics. Chapman & Hall, London (1956)

    MATH  Google Scholar 

  5. Dietterich, T.G.: Hierarchical reinforcement learning with the MAXQ value function decomposition. Journal of Artificial Intelligence Research 13, 227–303 (2000)

    MATH  MathSciNet  Google Scholar 

  6. Watkins, C.J.C.H.: Learning from Delayed Rewards. PhD thesis, King’s College (1989)

    Google Scholar 

  7. Ravindran, B., Barto, A.G.: SMDP homomorphisms: An algebraic approach to abstraction in semi markov decision processes. In: Proc. of the Eighteenth International Joint Conference on Artificial Intelligence (IJCAI 2003), pp. 1011–1018 (2003)

    Google Scholar 

  8. Ravindran, B., Barto, A.G.: Model minimization in hierarchical reinforcement learning. In: Koenig, S., Holte, R.C. (eds.) SARA 2002. LNCS (LNAI), vol. 2371, pp. 196–211. Springer, Heidelberg (2002)

    Chapter  Google Scholar 

  9. Dean, T., Givan, R.: Model minimization in markov decision processes. In: AAAI/IAAI, 106–111 (1997)

    Google Scholar 

  10. Givan, R., Leach, S.M., Dean, T.: Bounded-parameter markov decision processes. Artificial Intelligence 122, 71–109 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  11. Crites, R.H., Barto, A.G.: Elevator group control using multiple reinforcement learning agents. Machine Learning 33, 235–262 (1998)

    Article  MATH  Google Scholar 

  12. Wolpert, D., Tumer, K.: An introduction to collective intelligence. Technical Report NASA-ARC-IC-99-63, NASA Ames Research Center, CA (1999)

    Google Scholar 

  13. Braess, D.: Über ein Paradoxon der Verkehrsplanung. Unternehmensforschung 12, 258–268 (1968)

    Article  MATH  MathSciNet  Google Scholar 

  14. Rohanimanesh, K., Mahadevan, S.: Learning to take concurrent actions. In: NIPS, pp. 1619–1626 (2002)

    Google Scholar 

  15. Hengst, B.: Discovering hierarchy in reinforcement learning with HEXQ. In: Sammut, C., Hoffmann, A. (eds.) Proceedings of the Nineteenth International Conference on Machine Learning, pp. 243–250. Morgan Kaufmann, San Francisco (2002)

    Google Scholar 

  16. Kaelbling, L.P.: Hierarchical learning in stochastic domains: Preliminary results. In: Machine Learning Proceedings of the Tenth International Conference, San Mateo, CA, pp. 167–173. Morgan Kaufmann, San Francisco (1993)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Fitch, R., Hengst, B., Šuc, D., Calbert, G., Scholz, J. (2005). Structural Abstraction Experiments in Reinforcement Learning. In: Zhang, S., Jarvis, R. (eds) AI 2005: Advances in Artificial Intelligence. AI 2005. Lecture Notes in Computer Science(), vol 3809. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11589990_19

Download citation

  • DOI: https://doi.org/10.1007/11589990_19

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-30462-3

  • Online ISBN: 978-3-540-31652-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics