Skip to main content

Farthest-Point Queries with Geometric and Combinatorial Constraints

  • Conference paper

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 3742))

Abstract

In this paper we discuss farthest-point problems in which a set or sequence S of n points in the plane is given in advance and can be preprocessed to answer various queries efficiently. First, we give a data structure that can be used to compute the point farthest from a query line segment in O(log2 n) time. Our data structure needs O(n log n) space and preprocessing time. To the best of our knowledge no solution to this problem has been suggested yet. Second, we show how to use this data structure to obtain an output-sensitive query-based algorithm for polygonal path simplification. Both results are based on a series of data structures for fundamental farthest-point queries that can be reduced to each other.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Agarwal, P.K., Matoušek, J., Suri, S.: Farthest neighbors, maximum spanning trees and related problems in higher dimensions. Computational Geometry: Theory and Applications 1(4), 189–201 (1992)

    MATH  MathSciNet  Google Scholar 

  2. Aggarwal, A., Guibas, L.J., Saxe, J.B., Shor, P.W.: A linear-time algorithm for computing the Voronoi diagram of a convex polygon. Discrete & Computational Geometry 4(6), 591–604 (1989)

    Article  MATH  MathSciNet  Google Scholar 

  3. Aggarwal, A., Kravets, D.: A linear time algorithm for finding all farthest neighbors in a convex polygon. Information Processing letters 31(1), 17–20 (1989)

    Article  MATH  MathSciNet  Google Scholar 

  4. Bespamyatnikh, S.: Computing closest points for segments. Int. J. Comput. Geom. Appl. 13(5), 419–438 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  5. Bespamyatnikh, S., Snoeyink, J.: Queries with segments in Voronoi diagrams. Comput. Geom. Theory Appl. 16(1), 23–33 (2000)

    MATH  MathSciNet  Google Scholar 

  6. Chen, D.Z., Daescu, O.: Space-efficient algorithms for approximating polygonal curves in two dimensional space. International Journal of Computational Geometry and Applications 13(2), 95–112 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  7. Chen, D.Z., Daescu, O., Hershberger, J., Kogge, P.M., Snoeyink, J.: Polygonal path approximation with angle constraints. In: Proc. 12th Ann. ACM-SIAM Symp. on Discrete Algorithms (SODA 2001), pp. 342–343 (2001)

    Google Scholar 

  8. Cheong, O., Shin, C.-S., Vigneron, A.: Computing farthest neighbors on a convex polytope. Theoretical Computer Science 296, 47–58 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  9. Cole, R., Yap, C.-K.: Geometric retrieval problems. In: Proc. 24th Ann. IEEE Symposium on Foundations of Computer Science (FOCS 1983), pp. 112–121 (1983)

    Google Scholar 

  10. Cormen, T.H., Leiserson, C.E., Rivest, R.L.: Introduction to Algorithms. MIT Press, Cambridge (1990)

    MATH  Google Scholar 

  11. Daescu, O., Mi, N.: Polygonal path approximation: A query based approach. Computational Geometry: Theory and Applications 30(1), 41–58 (2005)

    MATH  MathSciNet  Google Scholar 

  12. Edelsbrunner, H., Guibas, L.J., Stolfi, J.: Optimal point location in a monotone subdivision. SIAM Journal on Computing 15, 317–340 (1986)

    Article  MATH  MathSciNet  Google Scholar 

  13. Gudmundsson, J., Haverkort, H., Park, S.-M., Shin, C.-S., Wolff, A.: Facility location and the geometric minimum-diameter spanning tree. In: Jansen, K., Leonardi, S., Vazirani, V.V. (eds.) APPROX 2002. LNCS, vol. 2462, pp. 146–160. Springer, Heidelberg (2002)

    Chapter  Google Scholar 

  14. Gudmundsson, J., Haverkort, H., Park, S.-M., Shin, C.-S., Wolff, A.: Facility location and the geometric minimum-diameter spanning tree. Computational Geometry: Theory and Applications 27(1), 87–106 (2004)

    MATH  MathSciNet  Google Scholar 

  15. Knuth, D.E.: Sorting and Searching. In: The Art of Computer Programming, vol. 3, Addison-Wesley, Reading (1973)

    Google Scholar 

  16. Matoušek, J.: Efficient partition trees. Discrete and Computational Geometry 8, 315–334 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  17. Mitchell, J.S.B., O’Rourke, J.: Computational geometry column 42. SIGACT News 32(3), 63–72 (2001)

    Article  Google Scholar 

  18. Mitra, P., Chaudhuri, B.: Efficiently computing the closest point to a query line. Pattern Recognition Letters 19(11), 1027–1035 (1998)

    Article  MATH  Google Scholar 

  19. Mukhopadhyay, A.: Using simplicial partitions to determine a closest point to a query line. In: Proc. Canadian Conf. Comp. Geom (CCCG 2002), pp. 10–12 (2002)

    Google Scholar 

  20. Preparata, F.P., Shamos, M.I.: Computational Geometry: An Introduction. Springer, Heidelberg (1990)

    Google Scholar 

  21. Vaidya, P.M.: An O(n logn) algorithm for the all-nearest-neighbors problem. Discrete and Computational Geometry 4, 101–115 (1989)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Daescu, O., Mi, N., Shin, CS., Wolff, A. (2005). Farthest-Point Queries with Geometric and Combinatorial Constraints. In: Akiyama, J., Kano, M., Tan, X. (eds) Discrete and Computational Geometry. JCDCG 2004. Lecture Notes in Computer Science, vol 3742. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11589440_7

Download citation

  • DOI: https://doi.org/10.1007/11589440_7

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-30467-8

  • Online ISBN: 978-3-540-32089-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics