The Geometry of Musical Rhythm

  • Godfried Toussaint
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3742)


Musical rhythm is considered from the point of view of geometry. The interaction between the two fields yields new insights into rhythm and music theory, as well as new problems for research in mathematics and computer science. Recent results are reviewed, and new open problems are proposed.


Binary Sequence Demand Point Interval Vector Music Information Retrieval Music Theory 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Alexander, R.: On the sum of distances between n points on a sphere. Acta. Math. Acad. Sci. Hungar. 23, 443–448 (1972)zbMATHCrossRefMathSciNetGoogle Scholar
  2. 2.
    Aloupis, G., Fevens, T., Langerman, S., Matsui, T., Mesa, A., Nuñez, Y., Rappaport, D., Toussaint, G.: Computing a geometric measure of the similarity between two melodies. In: Proc. 15th Canadian Conf. Computational Geometry, Dalhousie University, Halifax, Nova Scotia, Canada, August 11-13, pp. 81–84 (2003)Google Scholar
  3. 3.
    Arom, S.: African Polyphony and Polyrhythm. Cambridge University Press, Cambridge (1991)CrossRefGoogle Scholar
  4. 4.
    Biedl, T., Chan, T., Demaine, E.D., Fleischer, R., Golin, M., King, J.A., Munro, I.: Fun-sort – or the chaos of unordered binary search. Discrete Applied Mathematics 144(Issue 3), 231–236 (2004)zbMATHCrossRefMathSciNetGoogle Scholar
  5. 5.
    Block, S., Douthett, J.: Vector products and intervallic weighting. Journal of Music Theory 38, 21–41 (1994)CrossRefGoogle Scholar
  6. 6.
    Bookstein, A., Kulyukin, V.A., Raita, T.: Generalized Hamming distance. Information Retrieval 5(4), 353–375 (2002)CrossRefGoogle Scholar
  7. 7.
    Cha, S.-H., Srihari, S.N.: On measuring the distance between histograms. Pattern Recognition 35, 1355–1370 (2002)zbMATHCrossRefGoogle Scholar
  8. 8.
    Chakerian, G.D., Klamkin, M.S.: Inequalities for sums of distances. The American Mathematical Monthly 80(9), 1009–1017 (1973)zbMATHCrossRefMathSciNetGoogle Scholar
  9. 9.
    Chemillier, M.: Ethnomusicology, ethnomathematics. The logic underlying orally transmitted artistic practices. In: Assayag, G., Feichtinger, H.G., Rodrigues, J.F. (eds.) Mathematics and Music, pp. 161–183. Springer, Heidelberg (2002)Google Scholar
  10. 10.
    Chieh, C.: Analysis of cyclotomic sets. Zeitschrift Kristallographie 150, 261–277 (1979)MathSciNetCrossRefGoogle Scholar
  11. 11.
    Chung, K.-L.: An improved algorithm for solving the banded cyclic string-to-string correction problem. Theoretical Computer Science 201, 275–279 (1998)zbMATHCrossRefMathSciNetGoogle Scholar
  12. 12.
    Clough, J., Douthett, J.: Maximally even sets. Journal of Music Theory 35, 93–173 (1991)CrossRefGoogle Scholar
  13. 13.
    Colannino, J., Toussaint, G.: An algorithm for computing the restriction scaffold assignment problem in computational biology. Information Processing Letters (2005) (in press)Google Scholar
  14. 14.
    de Bruijn, N.G.: Sorting by means of swapping. Discrete Mathematics 9, 333–339 (1974)zbMATHCrossRefMathSciNetGoogle Scholar
  15. 15.
    Díaz-Bañez, M., Farigu, G., Gómez, F., Rappaport, D., Toussaint, G.T.: El compás flamenco: a phylogenetic analysis. In: Proc. BRIDGES: Mathematical Connections in Art, Music and Science, Southwestern College, Kansas, July 30 - August 1 (2004)Google Scholar
  16. 16.
    Duda, R.O., Hart, P.E., Stork, D.G.: Pattern Classification. John Wiley and Sons, Inc., Chichester (2001)zbMATHGoogle Scholar
  17. 17.
    Eck, D.: A positive-evidence model for classifying rhythmical patterns. Technical Report IDSIA-09-00, Instituto Dalle Molle di studi sull’intelligenza artificiale, Manno, Switzerland (2000)Google Scholar
  18. 18.
    Ekwueme, L.E.N.: Concepts in African musical theory. Journal of Black Studies 5(1), 35–64 (1974)Google Scholar
  19. 19.
    Erdős, P.: Distances with specified multiplicities. American Math. Monthly 96, 447 (1989)CrossRefGoogle Scholar
  20. 20.
    Erkut, E., Baptie, T., von Hohenbalken, B.: The discrete p-maxian location problem. Computers in Operations Research 17(1), 51–61 (1990)zbMATHCrossRefGoogle Scholar
  21. 21.
    Erkut, E., Ulkusal, T., Yenicerioglu, O.: A comparison of p-dispersion heuristics. Computers in Operations Research 21(10), 1103–1113 (1994)zbMATHCrossRefGoogle Scholar
  22. 22.
    Fekete, S.P., Meijer, H.: Maximum dispersion and geometric maximum weight cliques. Algorithmica 38, 501–511 (2004)zbMATHCrossRefMathSciNetGoogle Scholar
  23. 23.
    Fisher, M.J., Patterson, M.S.: String matching and other products. In: Richard, M. (ed.) Complexity of Computation, vol. 7, pp. 113–125. SIAM-AMS, Philadelphia (1974)Google Scholar
  24. 24.
    Forte, A.: The Structure of Atonal Music. Yale Univ. Press, New Haven (1973)Google Scholar
  25. 25.
    Francu, C., Nevill-Manning, C.G.: Distance metrics and indexing strategies for a digital library of popular music. In: Proceedings of the IEEE International Conference on Multimedia and EXPO (II) (2000)Google Scholar
  26. 26.
    Gamer, C.: Deep scales and difference sets in equal-tempered systems. In: Proceedings of the Second Annual Conference of the American Society of University Composers, pp. 113–122 (1967)Google Scholar
  27. 27.
    Gamer, C.: Some combinational resources of equal-tempered systems. Journal of Music Theory 11, 32–59 (1967)CrossRefGoogle Scholar
  28. 28.
    Gregor, J., Thomason, M.G.: Efficient dynamic programming alignment of cyclic strings by shift elimination. Pattern Recognition 29, 1179–1185 (1996)CrossRefGoogle Scholar
  29. 29.
    Gusfield, D.: Algorithms on Strings, Trees, and Sequences: Computer Science and Computational Biology. Cambridge University Press, Cambridge (1997)zbMATHCrossRefGoogle Scholar
  30. 30.
    Hassin, R., Rubinstein, S., Tamir, A.: Approximation algorithms for maximum dispersion. Operations Research Letters 21, 133–137 (1997)zbMATHCrossRefMathSciNetGoogle Scholar
  31. 31.
    Johnson, T.A.: Foundations of Diatonic Theory: A Mathematically Based Approach to Music Fundamentals. Key College Publishing, Emeryville (2003)zbMATHGoogle Scholar
  32. 32.
    Karp, R.M., Li, S.-Y.R.: Two special cases of the assignment problem. Discrete Mathematics 13, 129–142 (1975)zbMATHCrossRefMathSciNetGoogle Scholar
  33. 33.
    Keith, M.: From Polychords to Pólya: Adventures in Musical Combinatorics. Vinculum Press, Princeton (1991)Google Scholar
  34. 34.
    Lemke, P., Skiena, S.S., Smith, W.D.: Reconstructing sets from interpoint distances. Tech. Rept. DIMACS-2002-37 (2002)Google Scholar
  35. 35.
    Locke, D.: Drum Gahu: An Introduction to African Rhythm. White Cliffs Media, Gilsum (1998)Google Scholar
  36. 36.
    London, J.: Hearing in Time. Oxford University Press, Oxford (2004)CrossRefGoogle Scholar
  37. 37.
    Lubiw, A., Tanur, L.: Pattern matching in polyphonic music as a weighted geometric translation problem. In: Proceedings of the Fifth International Symposium on Music Information Retrieval, Barcelona, Spain, pp. 289–296 (October 2004)Google Scholar
  38. 38.
    Maes, M.: On a cyclic string-to-string correction problem. Information Processing Letters 35, 73–78 (1990)zbMATHCrossRefMathSciNetGoogle Scholar
  39. 39.
    McCartin, B.J.: Prelude to musical geometry. The College Mathematics Journal 29(5), 354–370 (1998)zbMATHCrossRefMathSciNetGoogle Scholar
  40. 40.
    Mongeau, M., Sankoff, D.: Comparison of musical sequences. Computers and the Humanities 24, 161–175 (1990)CrossRefGoogle Scholar
  41. 41.
    ÓMaidín, D.: A geometrical algorithm for melodic difference. Computing in Musicology 11, 65–72 (1998)Google Scholar
  42. 42.
    Orpen, K.S., Huron, D.: Measurement of similarity in music: A quantitative approach for non-parametric representations. In: Computers in Music Research, vol. 4, pp. 1–44 (1992)Google Scholar
  43. 43.
    Ortiz, F.: La Clave. Editorial Letras Cubanas, La Habana (1995)Google Scholar
  44. 44.
    Palásti, I.: A distance problem of Paul Erdős with some further restrictions. Discrete Mathematics 76, 155–156 (1989)zbMATHCrossRefMathSciNetGoogle Scholar
  45. 45.
    Pillichshammer, F.: On the sum of squared distances in the Euclidean plane. Arch. Math. 74, 472–480 (2000)zbMATHCrossRefMathSciNetGoogle Scholar
  46. 46.
    Pillichshammer, F.: A note on the sum of distances in the Euclidean plane. Arch. Math. 77, 195–199 (2001)zbMATHCrossRefMathSciNetGoogle Scholar
  47. 47.
    Pillichshammer, F.: On extremal point distributions in the Euclidean plane. Acta. Math. Acad. Sci. Hungar. 98(4), 311–321 (2003)zbMATHMathSciNetGoogle Scholar
  48. 48.
    Rahn, J.: Basic Atonal Theory. Schirmer (1980)Google Scholar
  49. 49.
    Ravi, S.S., Rosenkrantz, D.J., Tayi, G.K.: Heuristic and special case algorithms for dispersion problems. Operations Research 42(2), 299–310 (1994)zbMATHCrossRefGoogle Scholar
  50. 50.
    Rosenblatt, J., Seymour, P.: The structure of homometric sets. SIAM Journal of Algebraic and Discrete Methods 3, 343–350 (1982)zbMATHCrossRefMathSciNetGoogle Scholar
  51. 51.
    Ruskey, F., Sawada, J.: An efficient algorithm for generating necklaces with fixed density. SIAM Journal of Computing 29(2), 671–684 (1999)zbMATHCrossRefMathSciNetGoogle Scholar
  52. 52.
    Skiena, S.S., Sundaram, G.: A partial digest approach to restriction site mapping. Bulletin of Mathematical Biology 56, 275–294 (1994)zbMATHGoogle Scholar
  53. 53.
    Stolarsky, K.B.: Spherical distributions of N points with maximal distance sums are well spaced. Proceedings of the American Mathematical Society 48(1), 203–206 (1975)zbMATHCrossRefMathSciNetGoogle Scholar
  54. 54.
    Tamir, A.: Comments on the paper: “Heuristic and special case algorithms for dispersion problems. In: Ravi, S.S., Rosenkrantz, D.J., Tayi, G.K., (eds.) Operations Research, vol. 46, pp. 157–158 (1998)Google Scholar
  55. 55.
    Tóth, L.F.: On the sum of distances determined by a pointset. Acta. Math. Acad. Sci. Hungar. 7, 397–401 (1956)zbMATHCrossRefMathSciNetGoogle Scholar
  56. 56.
    Tóth, L.F.: Über eine Punktverteilung auf der Kugel. Acta. Math. Acad. Sci. Hungar. 10, 13–19 (1959)CrossRefMathSciNetGoogle Scholar
  57. 57.
    Toussaint, G.T.: Sharper lower bounds for discrimination information in terms of variation. IEEE Transactions on Information Theory, 99–100 (January 1975)Google Scholar
  58. 58.
    Toussaint, G.T.: A mathematical analysis of African, Brazilian, and Cuban clave rhythms. In: Proc. of BRIDGES: Mathematical Connections in Art, Music and Science, Towson University, MD, July 27-29, pp. 157–168 (2002)Google Scholar
  59. 59.
    Toussaint, G.T.: Algorithmic, geometric, and combinatorial problems in computational music theory. In: Proceedings of X Encuentros de Geometria Computacional, University of Sevilla, Sevilla, Spain, June 16-17, pp. 101–107 (2003)Google Scholar
  60. 60.
    Toussaint, G.T.: Classification and phylogenetic analysis of African ternary rhythm timelines. In: Proceedings of BRIDGES: Mathematical Connections in Art, Music and Science, Granada, Spain, July 23-27, pp. 25–36 (2003)Google Scholar
  61. 61.
    Toussaint, G.T.: A comparison of rhythmic similarity measures. In: Proc. 5th International Conference on Music Information Retrieval, Barcelona, Spain, October 10-14, pp. 242–245. Universitat Pompeu Fabra (2004)Google Scholar
  62. 62.
    Toussaint, G.T.: A mathematical measure of preference in African rhythm. In: Abstracts of Papers Presented to the American Mathematical Society, Phoenix, January 7-10, vol. 25, p. 248. American Mathematical Society, Providence (2004)Google Scholar
  63. 63.
    Toussaint, G.T.: The Euclidean algorithm generates traditional musical rhythms. In: Proc. of BRIDGES: Mathematical Connections in Art, Music and Science, Banff, Canada, July 31 - August 3 (2005)Google Scholar
  64. 64.
    Typke, R., Giannopoulos, P., Veltkamp, R.C., Wiering, F., van Oostrum, R.: Using transportation distances for measuring melodic similarity. In: Hoos, H.H., Bainbridge, D. (eds.) Proceedings of the Fourth International Symposium on Music Information Retrieval, pp. 107–114. Johns Hopkins University, Baltimore (2003)Google Scholar
  65. 65.
    Washburne, C.: Clave: The African roots of salsa. In: Kalinda!: Newsletter for the Center for Black Music Research, Columbia University, New York (1995); Fall-IssueGoogle Scholar
  66. 66.
    White, D.J.: The maximal dispersion problem and the first point outside the neighbourhood heuristic. Computers in Operations Research 18(1), 43–50 (1991)zbMATHCrossRefGoogle Scholar
  67. 67.
    Witsenhausen, H.S.: On the maximum of the sum of squared distances under a diameter constraint. The American Mathematical Monthly 81(10), 1100–1101 (1974)zbMATHCrossRefMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  • Godfried Toussaint
    • 1
  1. 1.School of Computer ScienceMcGill UniversityMontréalCanada

Personalised recommendations