Advertisement

Single-Vertex Origami and Spherical Expansive Motions

  • Ileana Streinu
  • Walter Whiteley
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3742)

Abstract

We prove that all single-vertex origami shapes are reachable from the open flat state via simple, non-crossing motions. We also consider conical paper, where the total sum of the cone angles centered at the origami vertex is not 2π. For an angle sum less than 2π, the configuration space of origami shapes compatible with the given metric has two components, and within each component, a shape can always be reconfigured via simple (non-crossing) motions. Such a reconfiguration may not always be possible for an angle sum larger than 2π.

The proofs rely on natural extensions to the sphere of planar Euclidean rigidity results regarding the existence and combinatorial characterization of expansive motions. In particular, we extend the concept of a pseudo-triangulation from the Euclidean to the spherical case. As a consequence, we formulate a set of necessary conditions that must be satisfied by three-dimensional generalizations of pointed pseudo-triangulations.

Keywords

Great Circle Planar Framework Antipodal Point Alignment Event Polygonal Path 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bern, M., Hayes, B.: The complexity of flat origami. In: Proc. 7th ACM-SIAM Symp. on Discrete Algorithms (SODA), Atlanta, pp. 175–183 (January 1996)Google Scholar
  2. 2.
    Biedl, T., Demaine, E., Demaine, M., Lazard, S., Lubiw, A., O’Rourke, J., Overmars, M., Robbins, S., Streinu, I., Toussaint, G., Whitesides, S.: Locked and unlocked polygonal chains in three dimensions. Discrete & Computational Geometry 26(3), 269–281 (2001)zbMATHMathSciNetGoogle Scholar
  3. 3.
    Cantarella, J., Johnston, H.: Nontrivial embeddings of polygonal intervals and unknots in 3-space. J. Knot Theory Ramifications 7(8), 1027–1039 (1998)zbMATHCrossRefMathSciNetGoogle Scholar
  4. 4.
    Connelly, R., Demaine, E., Rote, G.: Straightening polygonal arcs and convexifying polygonal cycles. Discrete & Computational Geometry 30(5), 205–239 (2003)zbMATHMathSciNetGoogle Scholar
  5. 5.
    Crapo, H., Whiteley, W.: Statics of frameworks and motions of panel structures: a projective geometric introduction. Structural Topology 6, 43–82 (1982)MathSciNetGoogle Scholar
  6. 6.
    Demaine, E., Demaine, M.: Recent results in computational origami. In: Proc. 3rd Int. Meeting of Origami Science, Math, and Education (OSME 2001), Monterey, California, March 9-11, pp. 3–16 (2001)Google Scholar
  7. 7.
    Demaine, E., Demaine, M., Mitchell, J.: Folding flat silhouettes and wrapping polyhedral packages: New results in computational origami. In: Proc. 15th ACM Symp. on Computational Geometry (SoCG 1999), Miami Beach, Florida, June 13-16, pp. 105–114 (1999)Google Scholar
  8. 8.
    Graver, J., Servatius, B., Servatius, H.: Combinatorial Rigidity. Graduate Studies in Mathematics, vol. 2. American Mathematical Society, Providence (1993)zbMATHGoogle Scholar
  9. 9.
    Huffman, D.: Curvature and creases: a primer on paper. IEEE Transactions on Computers C-25(10), 1010–1019 (1976)zbMATHCrossRefGoogle Scholar
  10. 10.
    Hull, T.: Rigid origami (2003), http://www.merrimack.edu/~thull/rigid/rigid.html
  11. 11.
    Kapovich, M., Millson, J.: Hodge theory and the art of paper-folding. Publications of RIMS, Kyoto 33(1), 1–33 (1997)zbMATHCrossRefMathSciNetGoogle Scholar
  12. 12.
    Kapovich, M., Millson, J.: On the moduli space of a spherical polygonal linkage. Canad. Math. Bull. 42(3), 307–320 (1999)zbMATHMathSciNetCrossRefGoogle Scholar
  13. 13.
    Lang, R.: A computational algorithm for origami design. In: Proc. 12th ACM Symposium on Computational Geometry, pp. 98–105 (1996)Google Scholar
  14. 14.
    Miura, K.: A note on intrinsic geometry of origami. In: Huzita, H. (ed.) Proc. First International Meeting of Origami Science and Technology, pp. 239–249 (1989)Google Scholar
  15. 15.
    Rote, G., Santos, F., Streinu, I.: Expansive motions and the polytope of pointed pseudo-triangulations. In: Pach, J., Aronov, B., Basu, S., Sharir, M. (eds.) Discrete and Computational Geometry - The Goodman-Pollack Festschrift, Algorithms and Combinatorics, pp. 699–736. Springer, Heidelberg (2003)Google Scholar
  16. 16.
    Saliola, F., Whiteley, W.: Notes on the equivalence of first-order rigidity in various geometries. (2002) (Preprint)Google Scholar
  17. 17.
    Streinu, I.: A combinatorial approach to planar non-colliding robot arm motion planning. In: Proc. ACM-IEEE Symposium on Foundations of Computer Science (FOCS), pp. 443–453 (2000)Google Scholar
  18. 18.
    Tay, T.S., Whiteley, W.: Generating isostatic graphs. Structural Topology 11, 21–68 (1985)zbMATHMathSciNetGoogle Scholar
  19. 19.
    Whiteley, W.: Cones, infinity and one-story buildings. Structural Topology 8, 53–70 (1983)zbMATHMathSciNetGoogle Scholar
  20. 20.
    Whiteley, W.: Rigidity and scene analysis. In: Goodman, J.E., O’Rourke, J. (eds.) Handbook of Discrete and Computational Geometry, 1st edn., pp. 893–916. CRC Press, Boca Raton (1997)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  • Ileana Streinu
    • 1
  • Walter Whiteley
    • 2
  1. 1.Computer Science DepartmentSmith CollegeNorthamptonUSA
  2. 2.Department of MathematicsYork UniversityTorontoCanada

Personalised recommendations