Advertisement

On the Minimum Size of a Point Set Containing Two Non-intersecting Empty Convex Polygons

  • Kiyoshi Hosono
  • Masatsugu Urabe
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3742)

Abstract

Let n (k, l) be the smallest integer such that any set of n (k, l) points in the plane, no three collinear, contains both an empty convex k -gon and an empty convex l -gon, which do not intersect. We show that n (3,5) = 10, 12 ≤ n (4,5) ≤ 14, 16 ≤ n (5,5) ≤ 20.

Keywords

Minimum Size Convex Cone Small Integer Convex Region Attack Point 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Erdős, P.: Some combinatorial problems in geometry. In: Proceedings Conference University Haifa. Lecture Notes in Mathematics, vol. 792, pp. 46–53 (1980)Google Scholar
  2. 2.
    Erdős, P., Szekeres, G.: A combinatorial problem in geometry. Compositio Math. 2, 463–470 (1935)MathSciNetGoogle Scholar
  3. 3.
    Harborth, H.: Konvexe Fünfecke in ebenen Punktmengen. Elem. Math. 33, 116–118 (1978)zbMATHMathSciNetGoogle Scholar
  4. 4.
    Horton, J.D.: Sets with no empty convex 7-gons. Canad. Math. Bull. 26, 482–484 (1983)zbMATHMathSciNetCrossRefGoogle Scholar
  5. 5.
    Hosono, K., Urabe, M.: On the number of disjoint convex quadrilaterals for a plannar point set. Comp. Geom. Theory Appl. 20, 97–104 (2001)zbMATHMathSciNetGoogle Scholar
  6. 6.
    Urabe, M.: On a partition into convex polygons. Disc. Appl. Math. 64, 179–191 (1996)zbMATHCrossRefMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  • Kiyoshi Hosono
    • 1
  • Masatsugu Urabe
    • 1
  1. 1.Department of MathematicsTokai UniversityShizuokaJapan

Personalised recommendations