Advertisement

I/O-Efficiently Pruning Dense Spanners

  • Joachim Gudmundsson
  • Jan Vahrenhold
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3742)

Abstract

Given a geometric graph G=(S,E) in \({\mathbb R}^{d}\) with constant dilation t, and a positive constant ε, we show how to construct a (1 + ε)-spanner of G with \({\mathcal O}(|S|)\) edges using \({\mathcal O}(sort(|E|))I/O\) I/O operations.

Keywords

Computational Geometry Query Range External Memory Steiner Point Internal Memory 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Aggarwal, A., Vitter, J.S.: The input/output complexity of sorting and related problems. Communications of the ACM 31(9), 1116–1127 (1988)CrossRefMathSciNetGoogle Scholar
  2. 2.
    Althöfer, I., Das, G., Dobkin, D.P., Joseph, D., Soares, J.: On sparse spanners of weighted graphs. Discrete & Computational Geometry 9, 81–100 (1993)zbMATHCrossRefMathSciNetGoogle Scholar
  3. 3.
    Alzoubi, K.M., Li, X.-Y., Wang, Y., Wan, P.-J., Frieder, O.: Geometric spanners for wireless ad hoc networks. IEEE Transactions on Parallel and Distributed Systems 14(4), 408–421 (2003)CrossRefGoogle Scholar
  4. 4.
    Arge, L.A.: External memory data structures. In: Abello, J., Pardalos, P.M., Resende, M.G.C. (eds.) Handbook of Massive Data Sets, pp. 313–357. Kluwer, Dordrecht (2002)Google Scholar
  5. 5.
    Arge, L.A., Procopiuc, O., Ramaswamy, S., Suel, T., Vitter, J.S.: Theory and practice of I/O-efficient algorithms for multidimensional batched searching problems. In: Proc. 9th ACM-SIAM Symposium on Discrete Algorithms, pp. 685–694 (1998)Google Scholar
  6. 6.
    Arya, S., Das, G., Mount, D.M., Salowe, J.S., Smid, M.: Euclidean spanners: short, thin, and lanky. In: Proc. 27th ACM Symposium on Theory of Computing, pp. 489–498 (1995)Google Scholar
  7. 7.
    Arya, S., Mount, D.M., Smid, M.: Randomized and deterministic algorithms for geometric spanners of small diameter. In: Proc. 35th IEEE Symposium on Foundations of Computer Science, pp. 703–712 (1994)Google Scholar
  8. 8.
    Bose, P., Gudmundsson, J., Morin, P.: Ordered theta graphs. Computational Geometry: Theory and Applications 28, 11–18 (2004)zbMATHMathSciNetGoogle Scholar
  9. 9.
    Buchsbaum, A.L., Westbrook, J.R.: Maintaining hierarchical graph views. In: Proc. 11th ACM-SIAM Symposium on Discrete Algorithms, pp. 566–575 (2000)Google Scholar
  10. 10.
    Callahan, P.B.: Dealing with higher dimensions: the well-separated pair decomposition and its applications. Ph.D. thesis, Department of Computer Science, Johns Hopkins University, Baltimore, Maryland (1995)Google Scholar
  11. 11.
    Callahan, P.B., Kosaraju, S.R.: A decomposition of multidimensional point sets with applications to k-nearest-neighbors and n-body potential fields. Journal of the ACM 42, 67–90 (1995)zbMATHCrossRefMathSciNetGoogle Scholar
  12. 12.
    Chandra, B., Das, G., Narasimhan, G., Soares, J.: New sparseness results on graph spanners. International Journal of Computational Geometry and Applications 5, 124–144 (1995)MathSciNetGoogle Scholar
  13. 13.
    Chen, D.Z., Das, G., Smid, M.: Lower bounds for computing geometric spanners and approximate shortest paths. Discrete Applied Mathematics 110, 151–167 (2001)zbMATHCrossRefMathSciNetGoogle Scholar
  14. 14.
    Chiang, Y.-J., Goodrich, M.T., Grove, E.F., Tamassia, R., Vengroff, D.E., Vitter, J.S.: External-memory graph algorithms. In: Proc. 6th ACM-SIAM Symposium on Discrete Algorithms, pp. 139–149 (1995)Google Scholar
  15. 15.
    Das, G., Heffernan, P., Narasimhan, G.: Optimally sparse spanners in 3-dimensional Euclidean space. In: Proc. 9th Annual ACM Symposium on Computational Geometry, pp. 53–62 (1993)Google Scholar
  16. 16.
    Das, G., Narasimhan, G.: A fast algorithm for constructing sparse Euclidean spanners. International Journal of Computational Geometry & Applications 7, 297–315 (1997)zbMATHCrossRefMathSciNetGoogle Scholar
  17. 17.
    Das, G., Narasimhan, G., Salowe, J.: A new way to weigh malnourished Euclidean graphs. In: Proc. 6th ACM-SIAM Symposium on Discrete Algorithms, pp. 215–222 (1995)Google Scholar
  18. 18.
    Eppstein, D.: Spanning trees and spanners. In: Sack, J.-R., Urrutia, J. (eds.) Handbook of Computational Geometry, pp. 425–461. Elsevier Science Publishers, Amsterdam (2000)CrossRefGoogle Scholar
  19. 19.
    Eubank, S., Kumar, V.A., Marathe, M.V., Srinivasany, A., Wang, N.: Structural and algorithmic aspects of massive social networks. In: Munro, J.I. (ed.) Proc. 15th ACM-SIAM Symposium on Discrete Algorithms, pp. 718–727 (2004)Google Scholar
  20. 20.
    Govindarajan, S., Lukovszki, T., Maheswari, A., Zeh, N.: I/O-efficient well-separated pair decomposition and its application. In: Paterson, M. (ed.) ESA 2000. LNCS, vol. 1879, pp. 220–231. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  21. 21.
    Gudmundsson, J., Levcopoulos, C., Narasimhan, G.: Improved greedy algorithms for constructing sparse geometric spanners. SIAM Journal of Computing 31(5), 1479–1500 (2002)zbMATHCrossRefMathSciNetGoogle Scholar
  22. 22.
    Gudmundsson, J., Levcopoulos, C., Narasimhan, G., Smid, M.: Approximate distance oracles for geometric graph. In: Proc. 13th ACM-SIAM Symposium on Discrete Algorithms, pp. 828–837 (2002)Google Scholar
  23. 23.
    Katriel, I., Meyer, U.: Elementary graph algorithms in external memory. In: Meyer, U., Sanders, P., Sibeyn, J.F. (eds.) Algorithms for Memory Hierarchies. LNCS, vol. 2625, pp. 62–84. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  24. 24.
    Keil, J.M.: Approximating the complete Euclidean graph. In: Proc. 1st Scandinavian Workshop on Algorithmic Theory, pp. 208–213 (1988)Google Scholar
  25. 25.
    Levcopoulos, C., Narasimhan, G., Smid, M.: Improved algorithms for constructing fault-tolerant spanners. Algorithmica 32, 144–156 (2002)zbMATHCrossRefMathSciNetGoogle Scholar
  26. 26.
    Li, X.-Y.: Applications of computational geometry in wireless ad hoc networks. In: Cheng, X.-Z., Huang, X., Du, D.-Z. (eds.) Ad Hoc wireless networking. Kluwer, Dordrecht (2003)Google Scholar
  27. 27.
    Lukovszki, T., Maheshwari, A., Zeh, N.: I/O-efficient batched range counting and its applications to proximity problems. In: Hariharan, R., Mukund, M., Vinay, V. (eds.) FSTTCS 2001. LNCS, vol. 2245, pp. 244–255. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  28. 28.
    Maheshwari, A., Smid, M., Zeh, N.: I/O-efficient shortest path queries in geometric spanners. In: Dehne, F., Sack, J.-R., Tamassia, R. (eds.) WADS 2001. LNCS, vol. 2125, pp. 287–299. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  29. 29.
    Navarro, G., Paredes, R.: Practical construction of metric t-spanners. In: 5th Workshop on Algorithmic Engineering and Experiments, pp. 69–81. SIMA Press (2003)Google Scholar
  30. 30.
    Navarro, G., Paredes, R., Chávez, E.: t-spanners as a data structure for metric space searching. In: Laender, A.H.F., Oliveira, A.L. (eds.) SPIRE 2002. LNCS, vol. 2476, pp. 298–309. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  31. 31.
    Salowe, J.S.: Constructing multidimensional spanner graphs. International Journal of Computational Geometry & Applications 1, 99–107 (1991)zbMATHCrossRefMathSciNetGoogle Scholar
  32. 32.
    Smid, M.: Closest point problems in computational geometry. In: Sack, J.-R., Urrutia, J. (eds.) Handbook of Computational Geometry, pp. 877–935. Elsevier Science Publishers, Amsterdam (2000)CrossRefGoogle Scholar
  33. 33.
    Toma, L.I., Zeh, N.: I/O-efficient algorithms for sparse graphs. In: Meyer, U., Sanders, P., Sibeyn, J.F. (eds.) Algorithms for Memory Hierarchies. LNCS, vol. 2625, pp. 85–109. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  34. 34.
    Vaidya, P.M.: A sparse graph almost as good as the complete graph on points in K dimensions. Discrete & Computational Geometry 6, 369–381 (1991)zbMATHCrossRefMathSciNetGoogle Scholar
  35. 35.
    Vitter, J.S.: External memory algorithms and data structures: Dealing with massive data. ACM Computing Surveys 33(2), 209–271 (2001)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  • Joachim Gudmundsson
    • 1
  • Jan Vahrenhold
    • 2
  1. 1.NICTASydneyAustralia
  2. 2.Institut für InformatikWestfälische Wilhelms-Universität MünsterMünsterGermany

Personalised recommendations