Advertisement

Tight Time Bounds for the Minimum Local Convex Partition Problem

  • Magdalene Grantson
  • Christos Levcopoulos
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3742)

Abstract

Let v be a vertex with n edges incident to it, such that the n edges partition an infinitesimally small circle C around v into convex pieces. The minimum local convex partition (MLCP) problem asks for two or three out of the n edges that still partition C into convex pieces and that are of minimum total length. We present an optimal algorithm solving the problem in linear time if the edges incident to v are sorted clockwise by angle. For unsorted edges our algorithm runs in O(n log n) time. For unsorted edges we also give a linear time approximation algorithm and a lower time bound.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Ben-Or, M.: Lower Bounds for Algebraic Computation Trees. In: Proc. ACM Symp. Th. Comp., pp. 80–86. ACM Press, New York (1983)Google Scholar
  2. 2.
    Ben-Or, M.: Algebraic Computation Trees in Characteristic p > 0. In: Proc. IEEE Symp. Found. Comp. Sci., pp. 534–539. IEEE Press, Piscataway (1994)Google Scholar
  3. 3.
    Blum, M., Floyd, R.W., Pratt, V., Rivest, R.L., Tarjan, R.E.: Time Bounds for Selection. Journal of Computer and System Sciences 7(4), 448–461 (1973)zbMATHCrossRefMathSciNetGoogle Scholar
  4. 4.
    Grantson, M.: Fixed-Parameter Algorithms and Other Results for Optimal Convex Partitions. Licentiate thesis, LU-CS-TR:2004-231, ISSN 1650-1276 Report 152. Lund University, Sweden (2004)Google Scholar
  5. 5.
    Grigoriev, D.: Randomized Complexity Lower Bounds. In: Proc. ACM Symp. Th. Comp., pp. 219–223. ACM Press, New York (1998)Google Scholar
  6. 6.
    Grigoriev, D., Karpinski, M., auf der Heide, F.M., Smolensky, R.: A Lower Bound for Randomized Algebraic Decision Trees. Computational Complexity 6(4), 357–375 (1997)CrossRefzbMATHGoogle Scholar
  7. 7.
    Lodi, E., Luccio, F., Mugnai, C., Pagli, L.: On Two-Dimensional Data Organization, Part I. Fundaments Informaticae 2, 211–226 (1979)zbMATHMathSciNetGoogle Scholar
  8. 8.
    Lubiw, A.: The Boolean Basis Problem and How to Cover Some Polygons by Rectangles. SIAM Journal on Discrete Mathematics 3, 98–115 (1990)zbMATHCrossRefMathSciNetGoogle Scholar
  9. 9.
    Moitra, D.: Finding a Minimum Cover for Binary Images: An Optimal Parallel Algorithm. Algorithmica 6, 624–657 (1991)zbMATHCrossRefMathSciNetGoogle Scholar
  10. 10.
    Plaisted, D., Hong, J.: A Heuristic Triangulation Algorithm. Journal of Algorithms 8, 405–437 (1987)zbMATHCrossRefMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  • Magdalene Grantson
    • 1
  • Christos Levcopoulos
    • 1
  1. 1.Department of Computer ScienceLund UniversityLundSweden

Personalised recommendations