Skip to main content

Abstract Models of Computation in Cryptography

  • Conference paper
Book cover Cryptography and Coding (Cryptography and Coding 2005)

Part of the book series: Lecture Notes in Computer Science ((LNSC,volume 3796))

Included in the following conference series:

Abstract

Computational security proofs in cryptography, without unproven intractability assumptions, exist today only if one restricts the computational model. For example, one can prove a lower bound on the complexity of computing discrete logarithms in a cyclic group if one considers only generic algorithms which can not exploit the properties of the representation of the group elements.

We propose an abstract model of computation which allows to capture such reasonable restrictions on the power of algorithms. The algorithm interacts with a black-box with hidden internal state variables which allows to perform a certain set of operations on the internal state variables, and which provides output only by allowing to check whether some state variables satisfy certain relations. For example, generic algorithms correspond to the special case where only the equality relation, and possibly also an abstract total order relation, can be tested.

We consider several instantiation of the model and different types of computational problems and prove a few known and new lower bounds for computational problems of interest in cryptography, for example that computing discrete logarithms is generically hard even if an oracle for the decisional Diffie-Hellman problem and/or other low degree relations were available.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Boneh, D., Lipton, R.J.: Algorithms for black-box fields and their application to cryptography. In: Koblitz, N. (ed.) CRYPTO 1996. LNCS, vol. 1109, pp. 283–297. Springer, Heidelberg (1996)

    Google Scholar 

  2. Diffie, W., Hellman, M.E.: New directions in cryptography. IEEE Transactions on Information Theory 22(6), 644–654 (1976)

    Article  MATH  MathSciNet  Google Scholar 

  3. Maurer, U.: Towards the equivalence of breaking the Diffie-Hellman protocol and computing discrete logarithms. In: Desmedt, Y.G. (ed.) CRYPTO 1994. LNCS, vol. 839, pp. 271–281. Springer, Heidelberg (1994)

    Google Scholar 

  4. Maurer, U., Wolf, S.: Lower bounds on generic algorithms in groups. In: Nyberg, K. (ed.) EUROCRYPT 1998. LNCS, vol. 1403, pp. 72–84. Springer, Heidelberg (1998)

    Chapter  Google Scholar 

  5. Maurer, U., Wolf, S.: On the complexity of breaking the Diffie-Hellman protocol. SIAM Journal on Computing 28, 1689–1721 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  6. Nechaev, V.I.: Complexity of a deterministic algorithm for the discrete logarithm. Mathematical Notes 55(2), 91–101 (1994)

    Article  MathSciNet  Google Scholar 

  7. Pohlig, S.C., Hellman, M.E.: An improved algorithm for computing logarithms over GF(p) and its cryptographic significance. IEEE Transactions on Information Theory 24(1), 106–110 (1978)

    Article  MATH  MathSciNet  Google Scholar 

  8. Pollard, J.M.: Monte Carlo methods for index computation mod p. Mathematics of Computation 32, 918–924 (1978)

    Article  MATH  MathSciNet  Google Scholar 

  9. Schwartz, J.T.: Fast probabilistic algorithms for verification of polynomial identities. Journal of the ACM 27(3), 701–717 (1980)

    Article  MATH  Google Scholar 

  10. Shoup, V.: Lower bounds for discrete logarithms and related problems. In: Fumy, W. (ed.) EUROCRYPT 1997. LNCS, vol. 1233, pp. 256–266. Springer, Heidelberg (1997)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Maurer, U. (2005). Abstract Models of Computation in Cryptography. In: Smart, N.P. (eds) Cryptography and Coding. Cryptography and Coding 2005. Lecture Notes in Computer Science, vol 3796. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11586821_1

Download citation

  • DOI: https://doi.org/10.1007/11586821_1

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-30276-6

  • Online ISBN: 978-3-540-32418-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics