Skip to main content

Bayesian Image Segmentation Using Gaussian Field Priors

  • Conference paper
Energy Minimization Methods in Computer Vision and Pattern Recognition (EMMCVPR 2005)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 3757))

Abstract

The goal of segmentation is to partition an image into a finite set of regions, homogeneous in some (e.g., statistical) sense, thus being an intrinsically discrete problem. Bayesian approaches to segmentation use priors to impose spatial coherence; the discrete nature of segmentation demands priors defined on discrete-valued fields, thus leading to difficult combinatorial problems.

This paper presents a formulation which allows using continuous priors, namely Gaussian fields, for image segmentation. Our approach completely avoids the combinatorial nature of standard Bayesian approaches to segmentation. Moreover, it’s completely general, i.e., it can be used in supervised, unsupervised, or semi-supervised modes, with any probabilistic observation model (intensity, multispectral, or texture features).

To use continuous priors for image segmentation, we adopt a formulation which is common in Bayesian machine learning: introduction of hidden fields to which the region labels are probabilistically related. Since these hidden fields are real-valued, we can adopt any type of spatial prior for continuous-valued fields, such as Gaussian priors. We show how, under this model, Bayesian MAP segmentation is carried out by a (generalized) EM algorithm. Experiments on synthetic and real data shows that the proposed approach performs very well at a low computational cost.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Balram, N., Moura, J.: Noncausal Gauss-Markov random fields: parameter structure and estimation. IEEE Trans. Information Theory 39, 1333–1355 (1993)

    Article  MATH  Google Scholar 

  2. Bernardo, J., Smith, A.: Bayesian Theory. J. Wiley & Sons, Chichester (1994)

    Book  MATH  Google Scholar 

  3. Böhning, D.: Multinomial logistic regression algorithm. Annals Inst. Stat. Math. 44, 197–200 (1992)

    Article  MATH  Google Scholar 

  4. Böhning, D., Lindsay, B.: Monotonicity of quadratic-approximation algorithms. Annals Inst. Stat. Math. 40, 641–663 (1988)

    Article  MATH  Google Scholar 

  5. Boykov, Y., Veksler, O., Zabih, R.: Fast approximate energy minimization via graph cuts. IEEE Trans. Patt. Anal. Mach. Intell. 23, 1222–1239 (2001)

    Article  Google Scholar 

  6. Chung, F.: Spectral Graph Theory. American Mathematical Society, Providence (1997)

    MATH  Google Scholar 

  7. Cross, G., Jain, A.: Markov random field texture models. IEEE Trans. Patt. Anal. and Mach. Intell. 5, 25–39 (1983)

    Article  Google Scholar 

  8. Derin, H., Elliot, H.: Modelling and segmentation of noisy and textured images in Gibbsian random fields. IEEE Trans. Patt. Anal. and Mach. Intell. 9, 39–55 (1987)

    Article  Google Scholar 

  9. Figueiredo, M.: Bayesian image segmentation using wavelet-based priors. In: Proc. of IEEE CVPR 2005, San Diego, CA (2005)

    Google Scholar 

  10. Figueiredo, M., Jain, A.K.: Unsupervised learning of finite mixture models. IEEE Trans. Patt. Anal. and Mach. Intell. 24, 381–396 (2002)

    Article  Google Scholar 

  11. Haralick, R., Shanmugan, K., Dinstein, I.: Textural features for image classification. IEEE Trans. Syst., Man, and Cybernetics 8, 610–621 (1973)

    Article  Google Scholar 

  12. Hastie, T., Tibshirani, R., Friedman, J.: The Elements of Statistical Learning. Springer, New York (2001)

    MATH  Google Scholar 

  13. Hermes, L., Buhmann, J.: A minimum entropy approach to adaptive image polygonization. IEEE Trans. Image Proc. 12, 1243–1258 (2003)

    Article  MathSciNet  Google Scholar 

  14. Hofmann, T., Puzicha, J., Buhmann, J.: Unsupervised texture segmentation in a deterministic annealing framework. IEEE Trans. Patt. Anal. and Mach. Intell. 20, 803–818 (1998)

    Article  Google Scholar 

  15. Jain, A.: Fundamentals of Digital Image Processing. Prentice Hall, Englewood Cliffs (1989)

    MATH  Google Scholar 

  16. Jain, A., Farrokhnia, F.: Unsupervised texture segmentation using Gabor filters. Pattern Recognition 24, 1167–1186 (1991)

    Article  Google Scholar 

  17. Kim, J., Fisher, J., Yezzi, A., Çetin, M., Willsky, A.: A nonparametric statistical method for image segmentation using information theory and curve evolution. IEEE Trans. Image Proc. (2005) (to appear)

    Google Scholar 

  18. Krishnapuram, B., Carin, L., Figueiredo, M., Hartemink, A.: Learning sparse Bayesian classifiers: multi-class formulation, fast algorithms, and generalization bounds. IEEE-TPAMI 27(6) (2005)

    Google Scholar 

  19. Lange, K., Hunter, D., Yang, I.: Optimization transfer using surrogate objective functions. Jour. Comp. Graph. Stat. 9, 1–59 (2000)

    Article  MathSciNet  Google Scholar 

  20. Li, S.Z.: Markov Random Field Modelling in Computer Vision. Springer, Heidelberg (2001)

    Google Scholar 

  21. Magnus, J., Neudecker, H.: Matrix Differential Calculus. John Wiley & Sons, Chichester (1988)

    MATH  Google Scholar 

  22. Marroquin, J., Santana, E., Botello, S.: Hidden Markov measure field models for image segmentation. IEEE Trans. Patt. Anal. and Mach. Intell. 25, 1380–1387 (2003)

    Article  Google Scholar 

  23. McLachlan, G., Krishnan, T.: The EM Algorithm and Extensions. John Wiley & Sons, New York (1997)

    MATH  Google Scholar 

  24. Nowak, R., Figueiredo, M.: Unsupervised progressive parsing of Poisson fields using minimum description length criteria. In: Proc. IEEE ICIP 1999, Kobe, Japan, vol. II, pp. 26–29 (1999)

    Google Scholar 

  25. Randen, T., Husoy, J.: Filtering for texture classification: a comparative study. IEEE Trans. Patt. Anal. Mach. Intell. 21, 291–310 (1999)

    Article  Google Scholar 

  26. Martin, D., Fowlkes, C., Malik, J.: Learning to detect natural image boundaries using local brightness, color and texture cues. IEEE Trans. Patt. Anal. Mach. Intell. 26, 530–549 (2004)

    Article  Google Scholar 

  27. Sharon, E., Brandt, A., Basri, R.: Segmentation and boundary detection using multiscale intensity measurements. In: Proc. IEEE CVPR, Kauai, Hawaii, vol. I, pp. 469–476 (2001)

    Google Scholar 

  28. Shi, J., Malik, J.: Normalized cuts and image segmentation. IEEE Trans. Patt. Anal. Mach. Intell. 22, 888–905 (2000)

    Article  Google Scholar 

  29. Unser, M.: Texture classification and segmentation using wavelet frames. IEEE Trans. Image Proc. 4, 1549–1560 (1995)

    Article  Google Scholar 

  30. Weiss, Y.: Segmentation using eigenvectors: a unifying view. In: Proc. Intern. Conf. on Computer Vision – ICCV 1999, pp. 975–982 (1999)

    Google Scholar 

  31. Williams, C., Barber, D.: Bayesian classification with Gaussian priors. IEEE Trans. Patt. Anal. and Mach. Intell. 20, 1342–1351 (1998)

    Article  Google Scholar 

  32. Wu, Z., Leahy, R.: Optimal graph theoretic approach to data clustering: theory and its application to image segmentation. IEEE Trans. Patt. Anal. Mach. Intell. 15, 1101–1113 (1993)

    Article  Google Scholar 

  33. Zabih, R., Kolmogorov, V.: Spatially coherent clustering with graph cuts. In: Proc. IEEE-CVPR, vol. II, pp. 437–444 (2004)

    Google Scholar 

  34. Zhu, S.C., Yuille, A.: Region competition: unifying snakes, region growing, and Bayes/MDL for multiband image segmentation. IEEE Trans. Patt. Anal. Mach. Intell. 18, 884–900 (1996)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Figueiredo, M.A.T. (2005). Bayesian Image Segmentation Using Gaussian Field Priors. In: Rangarajan, A., Vemuri, B., Yuille, A.L. (eds) Energy Minimization Methods in Computer Vision and Pattern Recognition. EMMCVPR 2005. Lecture Notes in Computer Science, vol 3757. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11585978_6

Download citation

  • DOI: https://doi.org/10.1007/11585978_6

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-30287-2

  • Online ISBN: 978-3-540-32098-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics