Advertisement

Stereo for Slanted Surfaces: First Order Disparities and Normal Consistency

  • Gang Li
  • Steven W. Zucker
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3757)

Abstract

Traditional stereo algorithms either explicitly use the frontal parallel plane assumption by only considering position (zero-order) disparity when computing similarity measures of two image windows, or implicitly use it by imposing a smoothness prior bias towards frontal parallel plane solution. However this introduces two types of systematic error for slanted or curved surfaces. The first type is structural, and relates to discrete pixel coordinates and neighborhood structure. The second is geometric, and relates to differential properties of surfaces. To eliminate these systematic errors we extend stereo matching to include first-order disparities. Contextual information is then expressed geometrically by transporting surface normals over overlapping neighborhoods, which takes a particularly simple (and efficient) form in the tangent plane approximation. In particular, we develop a novel stereo algorithm that combines first-order disparity information with position (zero-order) disparity for slanted surfaces, and illustrate its use.

Keywords

Belief Propagation Surface Orientation Stereo Match Normal Consistency Stereo Correspondence 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Barnard, S.T., Fischler, M.A.: Computational stereo. ACM Computing Surveys 14(4), 553–572 (1982)CrossRefGoogle Scholar
  2. 2.
    Birchfield, S., Tomasi, C.: A pixel dissimilarity measure that is insensitive to image sampling. IEEE Transactions on Pattern Analysis and Machine Intelligence 20(4), 401–406 (1998)CrossRefGoogle Scholar
  3. 3.
    Birchfield, S., Tomasi, C.: Multiway cut for stereo and motion with slanted surfaces. In: Proc. of IEEE International Conference on Computer Vision (1999)Google Scholar
  4. 4.
    Boykov, Y., Veksler, O., Zabih, R.: Fast approximate energy minimization via graph cuts. IEEE Transactions on Pattern Analysis and Machine Intelligence 23(11), 1222–1239 (2001)CrossRefGoogle Scholar
  5. 5.
    Brown, M.Z., Bruschka, D., Hager, G.D.: Advances in computational stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence 25(8), 993–1008 (2003)CrossRefGoogle Scholar
  6. 6.
    Devernay, F., Faugeras, O.D.: Computing differential properties of 3-d shapes from stereoscopic images without 3-d models. In: Proc. of IEEE Conference on Computer Vision and Pattern Recognition (1994)Google Scholar
  7. 7.
    Dhond, U.R., Aggarwal, J.K.: Structure from stereo – a review. IEEE Trans. on Systems, Man, and Cybernetics 19(6), 1489–1510 (1989)MathSciNetCrossRefGoogle Scholar
  8. 8.
    do Carmo, M.P.: Differential Geometry of Curves and Surfaces. Prentice-Hall, Inc., Englewood Cliffs (1976)zbMATHGoogle Scholar
  9. 9.
    Faugeras, O.: Three-Dimensional Computer Vision. MIT Press, Cambridge (1993)Google Scholar
  10. 10.
    Frohlinghaus, T., Buhmann, J.M.: Regularizing phase-based stereo. In: Proc. of ICPR (1996)Google Scholar
  11. 11.
    Hartley, R., Zisserman, A.: Multiple View Geometry in Computer Vision. Cambridge University Press, Cambridge (2000)zbMATHGoogle Scholar
  12. 12.
    Hoff, W., Ahuja, N.: Surfaces from stereo: Integrating feature matching, disparity estimation, and contour detection. IEEE Transactions on Pattern Analysis and Machine Intelligence 11(2), 121–136 (1989)CrossRefGoogle Scholar
  13. 13.
    Jones, D.G., Malik, J.: Determining three-dimensional shape from orientation and spatial frequency disparities. In: Proc. of European Conference on Computer Vision (1992)Google Scholar
  14. 14.
    Kanade, T., Okutomi, M.: A stereo maching algorithm with an adaptive window: Theory and experiment. IEEE Transactions on Pattern Analysis and Machine Intelligence 16(9), 920–932 (1994)CrossRefGoogle Scholar
  15. 15.
    Koenderink, J.J.: Solid Shape. MIT Press, Cambridge (1990)Google Scholar
  16. 16.
    Kolmogorov, V., Zabih, R.: Computing visual correspondence with occlusions using graph cuts. In: Proc. of IEEE International Conference on Computer Vision (2001)Google Scholar
  17. 17.
    Li, G., Zucker, S.W.: A differential geometrical model for contour-based stereo correspondence. In: Proc. IEEE Workshop on Variational, Geometric, and Level Set Methods in Computer Vision, at ICCV 2003 (2003)Google Scholar
  18. 18.
    Lin, M.H., Tomasi, C.: Surfaces with occlusions from layered stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence 26(8), 1073–1078 (2004)CrossRefGoogle Scholar
  19. 19.
    Marr, D., Poggio, T.: Cooperative computation of stereo disparity. Science 194, 283–287 (1976)CrossRefGoogle Scholar
  20. 20.
    Marr, D., Poggio, T.: A computational theory of human stereo vision. Proc. Royal Soc. London B 204, 301–328 (1979)CrossRefGoogle Scholar
  21. 21.
    Ogale, A.S., Aloimonos, Y.: Stereo correspondence with slanted surfaces: Critical implications of horizontal slant. In: Proc. of IEEE Conference on Computer Vision and Pattern Recognition (2004)Google Scholar
  22. 22.
    Press, W.H., Teukolsky, S.A., Vetterling, W.T., Flannery, B.P.: Numerical Reciples in C, 2nd edn. Cambridge University Press, Cambridge (1992)Google Scholar
  23. 23.
    Sander, P.T., Zucker, S.W.: Inferring surface trace and differential structure from 3-d images. IEEE Transactions on Pattern Analysis and Machine Intelligence 12(9), 833–854 (1990)CrossRefGoogle Scholar
  24. 24.
    Scharstein, D., Szeliski, R.: Stereo matching with nonlinear diffusion. International Journal of Computer Vision 28(2), 155–174 (1998)CrossRefGoogle Scholar
  25. 25.
    Scharstein, D., Szeliski, R.: A taxonomy and evaluation of dense two-frame stereo correspondence algorithms. International Journal of Computer Vision 47(1/2/3), 7–42 (2002)zbMATHCrossRefGoogle Scholar
  26. 26.
    Sun, J., Zheng, N.-N., Shum, H.-Y.: Stereo matching using belief propagation. IEEE Transactions on Pattern Analysis and Machine Intelligence 25(7), 787–800 (2003)CrossRefGoogle Scholar
  27. 27.
    Tappen, M.F., Freeman, W.T.: Comparison of graph cuts with belief propagation for stereo, using identical mrf parameters. In: Proc. of IEEE International Conference on Computer Vision (2003)Google Scholar
  28. 28.
    Wildes, R.P.: Direct recovery of three-diemensional scene geometry from binocular stereo disparity. IEEE Transactions on Pattern Analysis and Machine Intelligence 13(8), 761–774 (1991)CrossRefGoogle Scholar
  29. 29.
    Zitnick, C., Kanade, T.: A cooperative algorithm for stereo mathching and occlusion detection. IEEE Transactions on Pattern Analysis and Machine Intelligence 22(7), 675–684 (2000)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  • Gang Li
    • 1
  • Steven W. Zucker
    • 1
  1. 1.Department of Computer ScienceYale UniversityNew HavenUSA

Personalised recommendations