Advertisement

Some New Results on Non-rigid Correspondence and Classification of Curves

  • Xiqiang Zheng
  • Yunmei Chen
  • David Groisser
  • David Wilson
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3757)

Abstract

We present two new algorithms for correspondence and classification of planar curves in a non-rigid sense. In the first algorithm we define deforming energy based on aligning curves using certain of their properties, namely Multi-Step-Size Local Similarity (MSSLS) and the difference between the angle changes of beginning and ending tangent lines of two corresponding curve segments, as well as local scale of stretching. MSSLS overcomes the noise of local shape information of curves to be aligned. In the second algorithm, we improve the computation of shape context so that it catches the local information of ordered sets representing planar curves better. The optimal correspondence is found by a modified dynamic-programming method. Based on deforming energy, we can do pattern recognition among curves, which is very important in many areas such as recognition of hand-written characters and cardiac curves where rigid transformations and scaling do not work well. Finally, the effect of correspondence and classification is shown in application to hand-written characters and cardiac curves.

Keywords

Curve alignment recognition correspondence dynamic programming 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Sebastian, T.B., Klein, P.N., Kimia, B.B.: On Aligning Curves. IEEE Trans. on Pattern Analysis and Machine Intelligence 25(1), 116–124 (2003)CrossRefGoogle Scholar
  2. 2.
    Cohen, I., Ayache, N., Sulger, P.: Tracking Points on Deformable Objects Using Curvature Information. In: Proc. European Conf. Computer Vision, pp. 458–466 (1992)Google Scholar
  3. 3.
    Tagare, H.D.: Shape-Based Non-Rigid Correspondence with Application to Heart Motion Analysis. IEEE Trans. Medical Imaging 18(7), 570–578 (1999)CrossRefGoogle Scholar
  4. 4.
    Basri, R., Costa, L., Geiger, D., Jacobs, D.: Determining the Similarity of Deformable Shapes. Vision Research 38, 2365–2385 (1998)CrossRefGoogle Scholar
  5. 5.
    Younes, L.: Computable Elastic Distance between Shapes. SIAM J. Applied Math. 58, 565–586 (1998)zbMATHMathSciNetCrossRefGoogle Scholar
  6. 6.
    Tagare, H.D., O’Shea, D., Groisser, D.: Non-Rigid Shape Comparison of Plane Curves in Images. J. Mathematical Imaging and Vision 16(1), 57–68 (2002)zbMATHMathSciNetCrossRefGoogle Scholar
  7. 7.
    Belongie, S., Malik, J., Puzicha, J.: Shape Contexts: A New Descriptor for Shape Matching and Object Recognition. NIPS 13, 831–837 (2001)Google Scholar
  8. 8.
    Belongie, S., Malik, J., Puzicha, J.: Shape Matching and Object Recognition Using Shape Contexts. IEEE Trans. on Pattern Analysis and Machine Intelligence 24(24), 509–522 (2002)CrossRefGoogle Scholar
  9. 9.
    Frenkel, M., Basri, R.: Curve Matching Using the Fast Marching Method. LNCS, vol. 2683, pp. 35–51. Springer, Heidelberg (2003)Google Scholar
  10. 10.
    Sethian, J.: A Fast Marching Level Set Method for Monotonically Advancing Fronts. Proc. Nat. Acad. Sci. 93(4), 1591–1595 (1996)zbMATHMathSciNetCrossRefGoogle Scholar
  11. 11.
    Rangarajan, A., Chui, H., Mjolsness, E.: A relationship between spline-based deformable models and weighted graphs in non-rigid matching. In: IEEE Computer Vision and Pattern Recognition (CVPR), vol. 1, pp. 897–904 (2001)Google Scholar
  12. 12.
    Chui, H., Rangarajan, A.: A new point matching algorithm for non-rigid registration. In: Computer Vision and Image Understanding (CVIU), vol. 89, pp. 114–141 (2003)Google Scholar
  13. 13.
    Marzal, A., Vidal, E.: Computation of Normalized Edit Distances and Applications. IEEE Trans. Pattern Analysis and Machine Intelligence 15, 926–932 (1993)CrossRefGoogle Scholar
  14. 14.
    Sermesant, M., Forest, C., Pennec, X., Delingette, H., Ayache, N.: Deformable biomechanical models: Application to 4D cardiac image analysis. Medical Image Analysis 7(4), 475–488 (2003)CrossRefGoogle Scholar
  15. 15.
    Liu, H.C., Srinath, M.D.: Partial Shape Classification Using Contour Matching in Distance Transformation. IEEE Trans. Pattern Analysis and Machine Intelligence 12(11), 1072–1079 (1990)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  • Xiqiang Zheng
    • 1
  • Yunmei Chen
    • 1
  • David Groisser
    • 1
  • David Wilson
    • 1
  1. 1.Department of MathematicsUniversity of FloridaGainesvilleUSA

Personalised recommendations