Advertisement

Constrained Total Variation Minimization and Application in Computerized Tomography

  • Xiao-Qun Zhang
  • Jacques Froment
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3757)

Abstract

We present a simple framework for solving different ill-posed inverse problems in image processing by means of constrained total variation minimizations. We argue that drawbacks commonly attributed to total variation algorithms (slowness and incomplete fit to the image model) can be easily bypassed by performing only a few number of iterations in our optimization process. We illustrate this approach in the context of computerized tomography, that comes down to inverse a Radon transform obtained by illuminating an object by straight and parallel beams of x-rays. This problem is ill-posed because only a finite number of line integrals can be measured, resulting in an incomplete coverage of the frequency plane and requiring, for a direct Fourier reconstruction, frequencies interpolation from a polar to a Cartesian grid. We introduce a new method of interpolation based on a total variation minimization constrained by the knowledge of frequency coefficients in the polar grid, subject to a Lipschitz regularity assumption. The experiments show that our algorithm is able to avoid Gibbs and noise oscillations associated to the direct Fourier method, and that it outperforms classical reconstruction methods such as filtered backprojection and Rudin-Osher-Fatemi total variation restoration, in terms of both PSNR and visual quality.

Keywords

Computerize Tomog Cartesian Grid Wavelet Shrinkage Inverse Discrete Fourier Transform Polar Grid 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Rudin, L., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. Physica D 60, 259–268 (1992)zbMATHCrossRefGoogle Scholar
  2. 2.
    Chambolle, A., Lions, P.L.: Image recovery via total variation minimization and related problems. Numer. Math. 76, 167–188 (1997)zbMATHMathSciNetCrossRefGoogle Scholar
  3. 3.
    Acar, R., Vogel, C.: Analysis of total variation penalty methods for ill-posed problems. Inverse Problems 10, 1217–1229 (1994)zbMATHMathSciNetCrossRefGoogle Scholar
  4. 4.
    Li, Y., Santosa, F.: A computational algorithm for minimizing total variation in image restoration. IEEE Trans. on Image Proc. 5, 987–995 (1996)CrossRefGoogle Scholar
  5. 5.
    Vogel, C., Oman, M.: Iterative method for total variation denoising. SIAM J. Sci. Comput. 17, 227–238 (1996)zbMATHMathSciNetCrossRefGoogle Scholar
  6. 6.
    Dobson, D.C., Vogel, C.R.: Convergence of an iterative method for total variation denoising. SIAM J. Numer. Anal. 34, 1779–1791 (1997)zbMATHMathSciNetCrossRefGoogle Scholar
  7. 7.
    Vogel, C., Oman, M.: Fast, robust total variation-based reconstruction of noisy, blurred images. IEEE Trans. on Image Proc. 7, 813–824 (1998)zbMATHMathSciNetCrossRefGoogle Scholar
  8. 8.
    Chan, T., Golub, G., Mulet, P.: A nonlinear primal-dual method for total variation-based image restoration. SIAM J. Sci. Comput. 20, 1964–1977 (1999)zbMATHMathSciNetCrossRefGoogle Scholar
  9. 9.
    Dibos, F., Koepfler, G.: Global total variation minimization. SIAM J. Numer. Anal. 37, 646–664 (2000)zbMATHMathSciNetCrossRefGoogle Scholar
  10. 10.
    Darbon, J., Sigelle, M.: Exact optimization of discrete constrained total variation minimization problems. In: Klette, R., Žunić, J. (eds.) IWCIA 2004. LNCS, vol. 3322, pp. 548–557. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  11. 11.
    Combettes, P., Luo, J.: An adaptive level set method for nondifferentiable constrained image recovery. IEEE Trans. on Image Proc. 11, 1295–1304 (2002)MathSciNetCrossRefGoogle Scholar
  12. 12.
    Durand, S., Froment, J.: Reconstruction of wavelet coefficients using total variation minimization. SIAM J. Sci. Comput. 24, 1754–1767 (2003)zbMATHMathSciNetCrossRefGoogle Scholar
  13. 13.
    Chambolle, A.: An algorithm for total variation minimization and applications. J. Math. Imaging Vis. 20, 89–97 (2004)MathSciNetCrossRefGoogle Scholar
  14. 14.
    Alter, F., Durand, S., Froment, J.: Deblocking DCT-based compressed images with weighted total variation. In: Proc. of ICASSP 2004, Montréal, vol. 3 (2004)Google Scholar
  15. 15.
    Coifman, R., Sowa, A.: Combining the calculus of variations and wavelets for image enhancement. Applied and Comput. Harmonic Ana. 9, 1–18 (2000)zbMATHMathSciNetCrossRefGoogle Scholar
  16. 16.
    Chan, T.F., Zhou, H.: Total variation improved wavelet thresholding in image compression. In: Proc. of ICIP 2000 (2000)Google Scholar
  17. 17.
    Malgouyres, F.: Combining total variation and wavelet packet approaches for image deblurring. In: Proc. of IEEE work. on VLSM 2001, Vancouver, Canada, pp. 57–64 (2001)Google Scholar
  18. 18.
    Malgouyres, F.: Minimizing the total variation under a general convex constraint for image restoration. IEEE Trans. on Image Proc. 11, 1450–1456 (2002)MathSciNetCrossRefGoogle Scholar
  19. 19.
    Aliney, S.: A property of the minimum vectors of a regularizing functional defined by means of the absolute norm. IEEE Trans. on Signal Proc. 45, 913–917 (1997)CrossRefGoogle Scholar
  20. 20.
    Nikolova, M.: Minimization of cost-functions with non-smooth data-fidelity terms to clean impulsive noise. In: Rangarajan, A., Figueiredo, M.A.T., Zerubia, J. (eds.) EMMCVPR 2003. LNCS, vol. 2683, pp. 391–406. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  21. 21.
    Nikolova, M.: Minimization of cost-functions involving nonsmooth data-fidelity terms. application to the processing of outliers. SIAM J. Numer. Anal. 40, 965–994 (2002)zbMATHMathSciNetCrossRefGoogle Scholar
  22. 22.
    Gousseau, Y., Morel, J.M.: Are natural images of bounded variation? SIAM J. Math. Anal. 33, 634–648 (2001)zbMATHMathSciNetCrossRefGoogle Scholar
  23. 23.
    Meyer, Y.: Oscillating patterns in image processing and in some nonlinear evolution equations. In: The Fifteenth Dean Jacquelines B. Lewis Memorial Lectures, vol. 22. American Mathematical Society, Providence (2001)Google Scholar
  24. 24.
    Osher, S., Solé, A., Vese, L.: Image decomposition and restoration using total variation minimization and the H − 1 norm. SIAM Multiscale Model. Simul. 1, 349–370 (2003)zbMATHCrossRefGoogle Scholar
  25. 25.
    Vese, L., Osher, S.: Image denoising and decomposition with total variation minimization and oscillatory functions. J. Math. Imaging Vis. 20, 7–18 (2004)MathSciNetCrossRefGoogle Scholar
  26. 26.
    Aujol, J., Aubert, G., Blanc-Féraud, L., Chambolle, A.: Image decomposition into a bounded variation component and an oscillating component. J. Math. Imaging Vis. 22 (2005)Google Scholar
  27. 27.
    Aujol, J., Chambolle, A.: Duals norms and image decomposition models. Int. Jour. of Computer Vision 63, 85–104 (2005)CrossRefGoogle Scholar
  28. 28.
    Alter, F., Durand, S., Froment, J.: Adapted total variation for artifact free decompression of JPEG images. J. Math. Imaging Vis. 23 (2005)Google Scholar
  29. 29.
    Shepp, L., Logan, B.: The Fourier reconstruction of a head section. IEEE Trans. Nucl. Sci. 21, 21–43 (1974)CrossRefGoogle Scholar
  30. 30.
    Guichard, F., Malgouyres, F.: Total variation based interpolation. In: Proc. of EUSIPCO 1998, vol. 3, pp. 1741–1744 (1998)Google Scholar
  31. 31.
    Polyak, B.: Introduction to Optimization. Optimization Software (1987)Google Scholar
  32. 32.
    Combettes, P.L.: Convex set theoretic image recovery by extrapolated iterations of parallel subgradient projections. IEEE Trans. on Image Proc. 6, 493–506 (1997)CrossRefGoogle Scholar
  33. 33.
    Durand, S., Malgouyres, F., Rougé, B.: Image deblurring, spectrum interpolation and application to satellite imaging. ESAIM: COCV Control, Opt. and Cal. of Var. 5, 445–475 (2000)zbMATHCrossRefGoogle Scholar
  34. 34.
    Moisan, L.: Extrapolation de spectre et variation totale pondérée. In: Proc. of Gretsi 2001, Toulouse, France (2001)Google Scholar
  35. 35.
    Durand, S., Froment, J.: Artifact free signal denoising with wavelets. In: Proc. of ICASSP 2001, Salt Lake City, vol. 6 (2001)Google Scholar
  36. 36.
    Donoho, D., Johnstone, I.: Ideal spatial adaptation via wavelet shrinkage. Biometrika 81, 425–455 (1994)zbMATHMathSciNetCrossRefGoogle Scholar
  37. 37.
    Wallace, G.: The JPEG still picture compression standard. Communications of the ACM 34, 31–44 (1991)CrossRefGoogle Scholar
  38. 38.
    Kak, A., Slaney, M.: Principles of Computerized Tomographic Imaging. SIAM, Philadelphia (2001)CrossRefGoogle Scholar
  39. 39.
    Gottlieb, D., Gustafsson, B., Forssén, P.: On the direct Fourier method for computer tomography. IEEE Trans. Medical Imaging 19, 223–232 (2000)CrossRefGoogle Scholar
  40. 40.
    Waldén, J.: Analysis of the direct Fourier method for computer tomography. IEEE Trans. Medical Imaging 19, 211–222 (2000)CrossRefGoogle Scholar
  41. 41.
    Averbuch, A., Coifman, R., Donoho, D., Israeli, M., Waldén, J.: Fast slant stack: A notion of radon transform for data in a cartesian grid which is rapidly computable, algebraically exact, geometrically faithful and invertible. SIAM J. Sci. Comput. (to appear)Google Scholar
  42. 42.
    Bronstein, M., Bronstein, A., Zibulevsky, M., Azhari, H.: Reconstruction in ultrasound diffraction tomography using non-uniform FFT. IEEE Trans. Medical Imaging 21, 1395–1401 (2002)CrossRefGoogle Scholar
  43. 43.
    Fessler, J., Sutton, B.: Nonuniform fast Fourier transforms using min-max interpolation. IEEE Trans. on Signal Proc. 51, 560–574 (2003)MathSciNetCrossRefGoogle Scholar
  44. 44.
    Jonsson, E., Huang, S., Chan, T.: Total variation regularization in positron emission tomography. UCLA CAM Report 98-48, University of California, Los Angeles, CA (1998), http://www.math.ucla.edu/~chan/papers.html
  45. 45.
    Candès, E., Guo, F.: New multiscale transforms, minimum total variation synthesis: Applications to edge-preserving image reconstruction. Signal Processing 82, 1519–1543 (2002)zbMATHCrossRefGoogle Scholar
  46. 46.
    Capricelli, T.D., Combettes, P.L.: Parallel block-iterative reconstruction algorithms for binary tomography. In: Special issue of Electronic Notes in Discrete Mathematics: Workshop on discrete tomography and its applications, June 13-15, Elsevier, New York City (2005) (to appear)Google Scholar
  47. 47.
    Lee, N.Y., Lucier, B.J.: Wavelet methods for inverting the radon transform with noisy data. IEEE Trans. on Image Proc. 10, 79–94 (2001)zbMATHMathSciNetCrossRefGoogle Scholar
  48. 48.
    Chan, T., Marquina, A., Mulet, P.: High-order total variation-based image restoration. SIAM J. Sci. Comput. 22, 503–516 (2000)zbMATHMathSciNetCrossRefGoogle Scholar
  49. 49.
    Dobson, D., Santosa, F.: Recovery of blocky images from noisy and blurred data. SIAM J. Appl. Math. 56, 1181–1199 (1996)zbMATHMathSciNetCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  • Xiao-Qun Zhang
    • 1
  • Jacques Froment
    • 1
  1. 1.LMAMUniversité de Bretagne SudVannesFrance

Personalised recommendations