Geodesic Shooting and Diffeomorphic Matching Via Textured Meshes

  • Stéphanie Allassonnière
  • Alain Trouvé
  • Laurent Younes
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3757)


We propose a new approach in the context of diffeomorphic image matching with free boundaries. A region of interest is triangulated over a template, which is considered as a grey level textured mesh. A diffeomorphic transformation is then approximated by the piecewise affine deformation driven by the displacements of the vertices of the triangles. This provides a finite dimensional, landmark-type, reduction for this dense image comparison problem. Based on an optimal control model, we analyze and compare two optimization methods formulated in terms of the initial momentum: direct optimization by gradient descent, or root-finding for the transversality equation, enhanced by a preconditioning of the Jacobian. We finally provide a series of numerical experiments on digit and face matching.


Transversality Condition Image Match Initial Momentum Gradient Descent Algorithm Handwritten Digit 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Beg, M.F., Miller, M.I., Ratnanather, J.T., Trouvé, A., Younes, L.: Computing Metrics on Diffeomorphisms for Computational Anatomy. International Journal of Computer Vision (2004)Google Scholar
  2. 2.
    Beg, M.F., Miller, M.I., Trouvé, A., Younes, L.: Computing large deformation metric mappings via geodesic flow of diffeomorphisms. Int. J. Comp. Vis. 61, 139–157 (2005)CrossRefGoogle Scholar
  3. 3.
    Bookstein, F.L.: Morphometric tools for landmark data; geometry and biology. Cambridge University Press, Cambridge (1991)zbMATHGoogle Scholar
  4. 4.
    Broit, R., Bajcsy, C.: Matching of deformed images. In: Proc. 6th Int. Conf. of Pattern Recogition, München, pp. 351–353 (1982)Google Scholar
  5. 5.
    Camion, V., Younes, L.: Geodesic Interpolating Splines. In: Figueiredo, M., Zerubia, J., Jain, A.K. (eds.) EMMCVPR 2001. LNCS, vol. 2134, pp. 513–527. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  6. 6.
    Dupuis, P., Grenander, U., Miller, M.I.: Variational problems on flows of diffeomorphisms for image matching. Quart. Appl. Math. LVI, 587–600 (1998)Google Scholar
  7. 7.
    Garcin, L., Rangarajan, A., Younes, L.: Non rigid registration of shapes via diffeomorphic point matching and clusteringGoogle Scholar
  8. 8.
    Glaunes, J., Trouvé, A., Younes, L.: Modeling planar shape variation via hamiltonian flow of curves (submitted)Google Scholar
  9. 9.
    Glaunes, J., Vaillant, M., Miller, M.I.: Landmark matching via large deformation diffeomorphisms on the sphere. J. Math. Imaging Vision 20(1-2), 179–200 (2004)MathSciNetCrossRefGoogle Scholar
  10. 10.
    Grenander, U., Miller, M.I.: Computational anatomy: An emerging discipline. Quaterly of Applied Mathematics LVI, 617–694 (1998)Google Scholar
  11. 11.
    Holm, D.D., Ratnanather, J.T., Trouvé, A., Younes, L.: Solition Dynamics in Computational Anatomy. Neuroimage (2004)Google Scholar
  12. 12.
    Hull, D.G.: Optimal Control Theory for Applications, vol. XIX. Springer, Heidelberg (2003)zbMATHGoogle Scholar
  13. 13.
    Joshi, S., Miller, M.I.: Landmark matching via Large Deformation diffeomorphisms. IEEE Transaction in Image Processing 9, 1357–1370 (2000)zbMATHMathSciNetCrossRefGoogle Scholar
  14. 14.
    Marsland, S., Twining, C.: Clamped-plate splines and the optimak flow bounded diffeomorphisms. In: Complex Stochastic Systemp and Engineering, pp. 85–103. Clarendon Press, Oxford (2002)Google Scholar
  15. 15.
    Miller, M.I., Trouvé, A., Younes, L.: On the metrics and Euler Lagrange Equations of Computational Anatomy. Annual Review of Biomedical Engeneering 4, 375–405 (2002)CrossRefGoogle Scholar
  16. 16.
    Miller, M.I., Younes, L.: Group action, diffeomorphism and matching: a general framework. Int. J. Comp. Vis. 41, 61–84 (2001)zbMATHCrossRefGoogle Scholar
  17. 17.
    Richard, F., Cohen, L.: A new image registration technique with free boundary constraints: application to mammography. Computer Vision and Image Understanding 89(2-3), 166–196 (2003); Special Issue on Nonrigid RegistrationzbMATHCrossRefGoogle Scholar
  18. 18.
    Trouvé, A.: Diffeomorphisms Groups and Pattern Matching in Image Analysis. International Journal of Computer Vision 28(3), 213–221 (1998)CrossRefGoogle Scholar
  19. 19.
    Trouvé, A., Younes, L.: Local geometry of deformable template. SIAM Journal of Numerical Analysis (May 2004)Google Scholar
  20. 20.
    Vaillant, M., Glaunes, J.: Surface Matching via Currents. In: Proceedings of Information Processing in Medical Imaging (IPMI 2005), pp. 381–392 (2005)Google Scholar
  21. 21.
    Vaillant, M., Miller, M.I., Trouvé, A., Younes, L.: Statistics on diffeomorphisms via tangent space representaion. NeuroImage 23, S161–S169 (2004)CrossRefGoogle Scholar
  22. 22.
    Wahba, G.: Spine Models for Observational Data. SIAM, Philadelphia (1990)zbMATHGoogle Scholar
  23. 23.
    Younes, L.: Optimal matching between shapes via elastic deformations. Image and Vision Computing (1999)Google Scholar
  24. 24.
    Younes, L.: Computable elastic distances between shapes. SIAM J. Appl. Math. 58, 565–586 (1998)zbMATHMathSciNetCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  • Stéphanie Allassonnière
    • 1
  • Alain Trouvé
    • 2
  • Laurent Younes
    • 3
  1. 1.LAGA, Institut GaliléeUniversity Paris 13France
  2. 2.CMLAEcole Normale SupérieureCachanFrance
  3. 3.CISJohns Hopkins UniversityBaltimore

Personalised recommendations