Advertisement

Geodesic Image Matching: A Wavelet Based Energy Minimization Scheme

  • Laurent Garcin
  • Laurent Younes
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3757)

Abstract

In this paper, we first detail the geodesic matching of images which consists in minimizing an energy resulting from a Riemannian metric on a manifold of images, which itself comes from the projection of a Riemannian metric on a deformation group onto the image manifold. We will then present an energy minimization technique based on a wavelet analysis of the deformation and finally some applications with face images and 3D medical data.

Keywords

Wavelet Analysis Face Image Synthetic Data Discrete Wavelet Wavelet Basis 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bernard, C.: Fast optic flow computation with discrete wavelets. Technical Report RI365, Centre de Mathématiques Appliquées, École Polytechnique (May 1997)Google Scholar
  2. 2.
    Bernard, C.P.: Discrete wavelet analysis for fast optic flow computation. Applied and Computational Harmonic Analysis 11(1), 32–63 (2001)zbMATHCrossRefMathSciNetGoogle Scholar
  3. 3.
    Daubechies, I.: Ten lectures on wavelets. SIAM, Philadelphia (1992)zbMATHGoogle Scholar
  4. 4.
    Dupuis, P., Grenander, U.: Variational problems on flows of diffeomorphisms for image matching (1998)Google Scholar
  5. 5.
    Jaffard, S., Laurençot, P.: Orthonormal wavelets, analysis of operators, and applications to numerical analysis, pp. 543–601. Academic Press Professional, Inc., London (1992)Google Scholar
  6. 6.
    Mallat, S.: A theory for multiresolution signal decomposition: The wavelet representation. IEEE Trans. Pat. Anal. Mach. Intell. 11, 674–693 (1989)zbMATHCrossRefGoogle Scholar
  7. 7.
    Mallat, S.: A wavelet tour of signal processing. Academic Press, London (1998)zbMATHGoogle Scholar
  8. 8.
    Mallat, S.G., Hwang, W.L.: Singularity detection and processing with wavelets. IEEE Transactions on Information Theory 38(2), 617–643 (1992)CrossRefMathSciNetGoogle Scholar
  9. 9.
    Meyer, Y.: Wavelets and operators. In: Analysis at Urbana, Urbana, IL (1986–1987). London Mathematical Society Lecture Note Series, vol. I, 137, pp. 256–365. Cambridge University Press, Cambridge (1989)Google Scholar
  10. 10.
    Miller, M.I., Younes, L.: Group action, diffeomorphisms and matching: a general framework. International Journal of Computer Vision 41, 61–84 (2001)zbMATHCrossRefGoogle Scholar
  11. 11.
    Miller, M.I., Joshi, S.C., Christensen, G.E.: Large deformation fluid diffeomorphisms for landmark and image matching. In: Toga, A.W. (ed.) Brain Warping, ch. 7. Academic Press, London (1999)Google Scholar
  12. 12.
    Miller, M.I., Trouvé, A., Younes, L.: Geodesic shooting in computational anatomy. Technical report, Center for Imaging Science, Johns Hopkins University (2003)Google Scholar
  13. 13.
    Osher, S., Sethian, J.A.: Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79, 12–49 (1988)zbMATHCrossRefMathSciNetGoogle Scholar
  14. 14.
    Sethian, J.A.: Fast Marching Methods and Level Set Methods: Evolving Interfaces in Computational Geometry, Fluid Mechanics, Computer Vision and Materials Sciences. Cambridge University Press, Cambridge (1999)Google Scholar
  15. 15.
    Trouvé, A., Younes, L.: Metamorphoses through Lie group action. Foundations of Computational Mathematics (2004)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  • Laurent Garcin
    • 1
  • Laurent Younes
    • 2
  1. 1.Laboratoire MATISInstitut Géographique National 
  2. 2.Center for Imaging Science, Department of Appplied Mathematics and StatisticsJohns Hopkins University 

Personalised recommendations