Coined Quantum Walks Lift the Cospectrality of Graphs and Trees

  • David Emms
  • Simone Severini
  • Richard C. Wilson
  • Edwin R. Hancock
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3757)


In this paper we consider the problem of distinguishing graphs that are cospectral with respect to the standard adjacency and Laplacian matrix representations. Borrowing ideas from the field of quantum computing, we define a new matrix based on paths of the coined quantum walk. Quantum walks exhibit interference effects and their behaviour is markedly different to that of classical random walks. We show that the spectrum of this new matrix is able to distinguish many graphs which cannot be distinguished by standard spectral methods. We pay particular attention to strongly regular graphs; if a pair of strongly regular graphs share the same parameter set then there is no efficient algorithm that is proven to be able distinguish them. We have tested the method on large families of co-parametric strongly regular graphs and found it to be successful in every case. We have also tested the spectra’s performance when used to give a distance measure for inexact graph matching tasks.


Transition Matrix Regular Graph Graph Match Quantum Walk Quantum Amplitude 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Aharonov, D., Ambainis, A., Kempe, J., Vazirani, U.: Quantum walks on graphs. In: Proc. 33th STOC, pp. 50–59. ACM, New York (2001)Google Scholar
  2. 2.
    Aldous, D., Fill, J.: Reversible markov chains and random walks on graphs (2005)Google Scholar
  3. 3.
    Ambainis, A.: Quantum walks and their algorithmic applications. International Journal of Quantum Information 1, 507–518 (2003)zbMATHCrossRefGoogle Scholar
  4. 4.
    Ambainis, A.: Quantum walk algorithm for element distinctness. In: Proc. of 45th Annual IEEE Symposium on Foundations of Computer Science, FOCS 2004 (2004)Google Scholar
  5. 5.
    Ambainis, A., Bach, E., Nayak, A., Vishwanath, A., Watrous, J.: One-dimensional quantum walks. In: Proc. 33th STOC, pp. 60–69. ACM, New York (2001)Google Scholar
  6. 6.
    Braunstein, S.L.: Quantum teleportation without irreversible detection. Physical Review A, 1900–1903 (1996)Google Scholar
  7. 7.
    Brin, S., Page, L.: The anatomy of a large-scale hypertextual Web search engine. Computer Networks and ISDN Systems 30(1-7), 107–117 (1998)CrossRefGoogle Scholar
  8. 8.
    Cameron, P.J.: Topics in Algebraic Graph Theory. In: Chapter Strongly regular graphs, pp. 203–221. Cambridge University Press, Cambridge (2004)Google Scholar
  9. 9.
    Childs, A., Farhi, E., Gutmann, S.: An example of the difference between quantum and classical random walks. Quantum Information Processing 1, 35 (2002)MathSciNetCrossRefGoogle Scholar
  10. 10.
    Cirac, J., Zoller, P., Kimble, H.J., Mabuchi, H.: Quantum state transfer and entanglement distribution among distant nodes in a quantum network. Phys. Rev. Lett. 78, 3221–3224 (1997)CrossRefGoogle Scholar
  11. 11.
    Gori, M., Maggini, M., Sarti, L.: Graph matching using random walks. In: IEEE 17th International Conference on Pattern Recognition (August 2004)Google Scholar
  12. 12.
    Grover, L.: A fast quantum mechanical algorithm for database search. In: Proc. 28th Annual ACM Symposium on the Theory of Computation, pp. 212–219. ACM Press, New York (1996)Google Scholar
  13. 13.
    Kempe, J.: Quantum random walks – an introductory overview. Contemporary Physics 44(4), 307–327 (2003)MathSciNetCrossRefGoogle Scholar
  14. 14.
    Kempe, J.: Quantum random walks hit exponentially faster. In: Arora, S., Jansen, K., Rolim, J.D.P., Sahai, A. (eds.) RANDOM 2003 and APPROX 2003. LNCS, vol. 2764, pp. 354–369. Springer, Heidelberg (2003)Google Scholar
  15. 15.
    Kwiat, P., Mitchell, J.R., Schwindt, P.D.D., White, A.G.Google Scholar
  16. 16.
    Lovász, L.: Random Walks on Graphs: A Survey. In: Paul Erdös is Eighty, vol. 2, pp. 353–398. János Bolyai Mathematical Society, Budapest (1996)Google Scholar
  17. 17.
    Merris, R.: Almost all trees are coimmanantal. Linear Algebra and its Applications 150, 61–66 (1991)zbMATHMathSciNetCrossRefGoogle Scholar
  18. 18.
    Nayak, A., Vishwanath, A.: Quantum walk on a line, DIMACS Technical Report 2000-43 (2000)Google Scholar
  19. 19.
    Nielson, M.A., Chuang, I.L.: Quantum Computing and Quantum Information. Cambridge University Press, Cambridge (2000)Google Scholar
  20. 20.
    Robles-Kelly, A., Hancock, E.R.: Edit distance from graph spectra. In: Proc. of the IEEE International Conference on Computer Vision, pp. 234–241 (2003)Google Scholar
  21. 21.
    Robles-Kelly, A., Hancock, E.R.: String edit distance, random walks and graph matching. International Journal of Pattern Recognition and Artificial Intelligence 18(3), 315–327 (2004)CrossRefGoogle Scholar
  22. 22.
    Schwenk, A.J.: Almost all trees are cospectral. In: Harary, F. (ed.) New Directions in the Theory of Graphs, pp. 275–307. Academic Press, London (1973)Google Scholar
  23. 23.
    Severini, S.: On the digraph of a unitary matrix. SIAM Journal on Matrix Analysis and Applications 25(1), 295–300 (2003)zbMATHMathSciNetCrossRefGoogle Scholar
  24. 24.
    Shenvi, N., Kempe, J., Whaley, K.B.: A quantum random walk search algorithm. Phys. Rev. A 67(5) (2003)Google Scholar
  25. 25.
    Sinclair, A.: Algorithms for random generation and counting: a Markov chain approach. Birkhauser, Boston (1993)zbMATHGoogle Scholar
  26. 26.
    Spence, E.: Strongly Regular Graphs (2004),

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  • David Emms
    • 1
  • Simone Severini
    • 1
  • Richard C. Wilson
    • 2
  • Edwin R. Hancock
    • 2
  1. 1.Departments of Computer Science and Mathematics 
  2. 2.Department of Computer ScienceUniversity of YorkYorkUK

Personalised recommendations