Advertisement

Spatio-temporal Segmentation Using Dominant Sets

  • Andrea Torsello
  • Massimiliano Pavan
  • Marcello Pelillo
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3757)

Abstract

Pairwise data clustering techniques are gaining increasing popularity over traditional, feature-based central grouping techniques. These approaches have proven very powerful when applied to image-segmentation problems. However, they are computationally too demanding to be applied to video-segmentaton problems due to their scaling behavior with the quantity of data. On a dataset containing N examples, the number of potential comparisons scales with O(N 2), thereby rendering the approaches unfeasible for problems involving very large data sets. It is therefore of primary importance to develop strategies to reduce the number of comparisons required by subsampling the data and extending the grouping to out-of-sample points after the clustering process has taken place. In this paper we present an approach to out-of-sample clustering based on the dominant set framework [10] and apply it to video segmentation. The method is compared against two recent pairwise clustering algorithms which provide out-of-sample extensions: the Nyström method [3], and the minimal-shift embedding approach [14]. Our results show that our approach performs comparably against the competition in terms of quality of the segmentation, being, however, much faster.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bengio, Y., Paiement, J.-F., Vincent, P., Delalleau, O., Le Roux, N., Ouimet, M.: Out-of-sample extensions for LLE, isomap, MDS, eigenmaps, and spectral clustering. In: Advances in Neural Information Processing Systems, vol. 16. MIT Press, Cambridge (2004)Google Scholar
  2. 2.
    Fischer, B., Buhmann, J.M.: Path-based clustering for grouping of smooth curves and texture segmentation. IEEE Trans. Pattern Anal. Machine Intell. 25(4), 513–518 (2003)CrossRefGoogle Scholar
  3. 3.
    Fowlkes, C., Belongie, S., Chun, F., Malik, J.: Spectral grouping using the Nyström method. IEEE Trans. Pattern Anal. Machine Intell. 26, 214–225 (2004)CrossRefGoogle Scholar
  4. 4.
    Hamid, R., et al.: Detection and explanation of anomalous activities: representing activities as bags of event n-grams. In: CVPR 2005 (2005) (to appear)Google Scholar
  5. 5.
    Hofmann, T., Buhmann, J.M.: Pairwise data clustering by deterministic annealing. IEEE Trans. Pattern Anal. Machine Intell. 19, 1–14 (1997)CrossRefGoogle Scholar
  6. 6.
    Luenberger, D.: Linear and nonlinear programming. Addison-Wesley, Reading (1984)zbMATHGoogle Scholar
  7. 7.
    Mailk, J., Belongie, S., Leung, T., Shi, J.: Contour and texture analysis for image segmentation. Int. J. of Computer Vision 43(1), 7–27 (2001)CrossRefGoogle Scholar
  8. 8.
    Motzkin, T.S., Straus, E.G.: Maxima for graphs and a new proof of a theorem of Turán. Canad. J. Math. 17, 533–540 (1965)zbMATHCrossRefMathSciNetGoogle Scholar
  9. 9.
    Ng, A.Y., Jordan, M.I., Weiss, Y.: On spectral clustering: Analysis and an algorithm. In: Advances in Neural Information Processing Systems, vol. 14, pp. 849–856. MIT Press, Cambridge (2002)Google Scholar
  10. 10.
    Pavan, M., Pelillo, M.: A new graph-theoretic approach to clustering and segmentation. In: Proc. IEEE Conf. Computer Vision and Pattern Recognition, pp. 145–152 (2003)Google Scholar
  11. 11.
    Pavan, M., Pelillo, M.: Unsupervised texture segmentation by dominant sets and game dynamics. In: Proc. 12th Int. Conf. on Image Analysis and Processing, pp. 302–307 (2003)Google Scholar
  12. 12.
    Pavan, M., Pelillo, M.: Efficient out-of-sample extension of dominant-set clusters. In: Advances in Neural Information Processing Systems, vol. 17, pp. 1057–1064. MIT Press, Cambridge (2005)Google Scholar
  13. 13.
    Perona, P., Freeman, W.: A factorization approach to grouping. In: Burkhardt, H.-J., Neumann, B. (eds.) ECCV 1998. LNCS, vol. 1406, pp. 655–670. Springer, Heidelberg (1998)Google Scholar
  14. 14.
    Roth, V., Laub, J., Kawanabe, M., Buhmann, J.M.: Optimal cluster preserving embedding of nonmetric proximity data. IEEE Trans. Pattern Anal. Machine Intell. 25, 1540–1551 (2003)CrossRefGoogle Scholar
  15. 15.
    Sarkar, S., Boyer, K.: Quantitative measures of change based on feature organization: Eigenvalues and eigenvectors. Computer Vision and Image Understanding 71, 110–136 (1998)CrossRefGoogle Scholar
  16. 16.
    Shi, J., Malik, J.: Normalized cuts and image segmentation. IEEE Trans. Pattern Anal. Machine Intell. 22, 888–905 (2000)CrossRefGoogle Scholar
  17. 17.
    Weibull, J.W.: Evolutionary game theory. MIT Press, Cambridge (1995)zbMATHGoogle Scholar
  18. 18.
    Weiss, Y.: Segmentation using eigenvectors: A unifying view. In: Proc. 7th Int. Conf. on Computer Vision, pp. 975–982 (1999)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  • Andrea Torsello
    • 1
  • Massimiliano Pavan
    • 1
  • Marcello Pelillo
    • 1
  1. 1.Dipartimento di InformaticaUniversità Ca’ Foscari di VeneziaVenezia MestreItaly

Personalised recommendations