Skip to main content

Retrieving Articulated 3-D Models Using Medial Surfaces and Their Graph Spectra

  • Conference paper
Energy Minimization Methods in Computer Vision and Pattern Recognition (EMMCVPR 2005)

Abstract

We consider the use of medial surfaces to represent symmetries of 3-D objects. This allows for a qualitative abstraction based on a directed acyclic graph of components and also a degree of invariance to a variety of transformations including the articulation and deformation of parts. We demonstrate the use of this representation for both indexing and matching 3-D object models. Our formulation uses the geometric information associated with each node along with an eigenvalue labeling of the adjacency matrix of the subgraph rooted at that node. We present comparative results against the techniques of shape distributions [17] and harmonic spheres [12] on a database of 320 models representing 13 object classes. The results demonstrate that medial surface based graph matching significantly outperforms these techniques for objects with articulating parts.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Alt, H., Aichholzer, O., Rote, G.: Matching Shapes With a Reference Point. In: Proceedings of the Tenth Annual Symposiusm on Computational Geometry, pp. 85–92 (1994)

    Google Scholar 

  2. Amenta, N., Choi, S., Kolluri, R.: The Power Crust, Unions of Balls, and the Medial Axis Transform. Computational Geometry: Theory and Applications 19(2), 127–153 (2001)

    MATH  MathSciNet  Google Scholar 

  3. Ankerst, M., Kastenmüller, G., Kriegel, H., Seidl, T.: 3-D Shape Histograms for Similarity Search and Classification in Spatial Databases. In: Advances in Spatial Databases, 6th International Symposium, vol. 18, pp. 700–711 (1999)

    Google Scholar 

  4. Biederman, I.: Recognition–By–Components: A Theory of Human Image Understanding. Psychological Review 94(2), 115–147 (1987)

    Article  Google Scholar 

  5. Binford, T.O.: Visual Perception by Computer. In: IEEE Conference on Systems and Control (December 1971)

    Google Scholar 

  6. Blum, H.: Biological Shape and Visual Science. Journal of Theoretical Biology 38, 205–287 (1973)

    Article  Google Scholar 

  7. Elad, M., Tal, A., Ar, S.: Content Based Retrieval of VRML Objects- An Iterative and Interactive Approach. In: 6th Europgraphics Workshop on Multimedia, Manchester, UK, pp. 107–118 (2001)

    Google Scholar 

  8. Giblin, P.J., Kimia, B.B.: A formal Classification of 3D Medial Axis Points and Their Local Geometry. IEEE Transactions on Pattern Analysis and Machine Intelligence 26(2), 238–251 (2004)

    Article  Google Scholar 

  9. Hamza, A.B., Krim, H.: Geodesic Object Representation and Recognition. In: Nyström, I., Sanniti di Baja, G., Svensson, S. (eds.) DGCI 2003. LNCS, vol. 2886, pp. 378–387. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  10. Hilaga, M., Shinagawa, Y., Kohmura, T., Kunii, T.L.: Topology Matching for Fully Automatic Similarity Estimation of 3D Shapes. In: Proceedings of ACM SIGGRAPH, pp. 203–212 (2001)

    Google Scholar 

  11. Kazhdan, M., Chazelle, B., Dobkin, D., Funkhouser, T., Rusinkiewicz, S.: A Reflective Symmetry Descriptor for 3-D Models. Algorithmica 38(1), 201–225 (2003)

    Article  MathSciNet  Google Scholar 

  12. Kazhdan, M., Funkhouser, T., Rusinkiewicz, S.: Rotation Invariant Spherical Harmonic Representation of 3D Shape Descriptors. In: Symposium on Geometry Processing (June 2003)

    Google Scholar 

  13. Leymarie, F.F., Kimia, B.B.: Computation of the Shock Scaffold for Unorganized Point Clouds in 3D. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Madison, Wisconsin, pp. 821–827 (2003)

    Google Scholar 

  14. Macrini, D.: Indexing and Matching for View-Based 3-D Object Recognition Using Shock Graphs. PhD thesis, University of Toronto (2003)

    Google Scholar 

  15. Malandain, G., Bertrand, G., Ayache, N.: Topological Segmentation of Discrete Surfaces. International Journal of Computer Vision 10(2), 183–197 (1993)

    Article  Google Scholar 

  16. Marr, D., Nishihara, K.H.: Representation and Recognition of the Spatial Organization of Three Dimensional Structure. Proceedings of the Royal Society of London, B 200, 269–294 (1978)

    Article  Google Scholar 

  17. Osada, R., Funkhouser, T., Chazelle, B., Dobkin, D.: Shape Distributions. ACM Transactions on Graphics 21(4), 807–832 (2002)

    Article  Google Scholar 

  18. Pellilo, M., Siddiqi, K., Zucker, S.W.: Matching Hierarchical Structures Using Association Graphs. IEEE Transactions on Pattern Analysis and Machine Intelligence 21(11), 1105–1120 (1999)

    Article  Google Scholar 

  19. Pentland, A.: Perceptual organization and the representation of natural form. Artificial Intelligence 28, 293–331 (1986)

    Article  MathSciNet  Google Scholar 

  20. Reyner, S.W.: An Analysis of a Good Algorithm for the Subtree Problem. SIAM J. Comput. 6, 730–732 (1977)

    Article  MATH  MathSciNet  Google Scholar 

  21. Rosch, E.: Principles of Categorization. In: Cognition and Categorization. L. Erlbaum Associates, Mahwah (1978)

    Google Scholar 

  22. Sebastian, T., Klein, P., Kimia, B.: Recognition of shapes by editing their shock graphs. IEEE Transactions on Pattern Analysis and Machine Intelligence 26, 551–571 (2004)

    Article  Google Scholar 

  23. Shilane, P., Min, P., Kazhdan, M., Funkhouser, T.: The Princeton Shape Benchmark. In: Shape Modeling International, Genova, Italy (June 2004)

    Google Scholar 

  24. Shinagawa, Y., Kunii, T.L., Kergosien, Y.L.: Surface Coding Based on Morse Theory. IEEE Transactions on Computer Graphics and Applications 11(5), 66–78 (1991)

    Article  Google Scholar 

  25. Shokoufandeh, A., Dickinson, S.J., Siddiqi, K., Zucker, S.W.: Indexing Using a Spectral Encoding of Topological Structure. In: IEEE Conference on Computer Vision and Pattern Recognition, Fort Collins, CO, June 1999, pp. 491–497 (1999)

    Google Scholar 

  26. Shokoufandeh, A., Macrini, D., Dickinson, S., Siddiqi, K., Zucker, S.: Indexing Hierarchical Structures Using Graph Spectra. IEEE Transactions on Pattern Analysis and Machine Intelligence 27(7) (2005)

    Google Scholar 

  27. Siddiqi, K., Bouix, S., Tannenbaum, A., Zucker, S.W.: Hamilton-Jacobi Skeletons. International Journal of Computer Vision 48(3), 215–231 (2002)

    Article  MATH  Google Scholar 

  28. Siddiqi, K., Shokoufandeh, A., Dickinson, S.J., Zucker, S.W.: Shock Graphs and Shape Matching. International Journal of Computer Vision 35(1), 13–32 (1999)

    Article  Google Scholar 

  29. Sundar, H., Silver, D., Gagvani, N., Dickinson, S.: Skeleton Based Shape Matching and Retrieval. In: International Conference on Shape Modeling International and Applications, Seoul, Korea, May 2003, pp. 130–142 (2003)

    Google Scholar 

  30. Vranic, D., Saupe, D.: 3-D Model Retrieval With Spherical Harmonics and Moments. In: Radig, B., Florczyk, S. (eds.) DAGM 2001. LNCS, vol. 2191, pp. 392–397. Springer, Heidelberg (2001)

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Zhang, J., Siddiqi, K., Macrini, D., Shokoufandeh, A., Dickinson, S. (2005). Retrieving Articulated 3-D Models Using Medial Surfaces and Their Graph Spectra. In: Rangarajan, A., Vemuri, B., Yuille, A.L. (eds) Energy Minimization Methods in Computer Vision and Pattern Recognition. EMMCVPR 2005. Lecture Notes in Computer Science, vol 3757. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11585978_19

Download citation

  • DOI: https://doi.org/10.1007/11585978_19

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-30287-2

  • Online ISBN: 978-3-540-32098-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics