Advertisement

Discontinuity Preserving Phase Unwrapping Using Graph Cuts

  • José M. Bioucas-Dias
  • Gonçalo Valadão
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3757)

Abstract

We present a new algorithm for recovering the absolute phase from modulo-2π phase, the so-called phase unwrapping (PU) problem. PU arises as a key step in several imaging technologies, from which we emphasize interferometric synthetic aperture radar/sonar (InSAR/SAS), magnetic resonance imaging (MRI), and optical interferometry. We adopt a discrete energy minimization viewpoint, where the objective function is a first-order Markov random field. The minimization problem is dealt with via a binary iterative scheme, with each iteration step cast onto a graph cut based optimization problem. For convex clique potentials we provide an exact energy minimization algorithm; namely we solve exactly the PU classical L p norm, with p ≥ 1. For nonconvex clique potentials, it is well known that PU performance is particularly enhanced, namely, the discontinuity preserving ability; however the problem is NP-hard. Accordingly, we provide an approximate algorithm, which is a modified version of the first proposed one. For simplicity we call both algorithms PUMF, for Phase Unwrapping Max-Flow. The state-of-the-art competitiveness of PUMF is illustrated in a series of experiments.

Keywords

IEEE Transaction Synthetic Aperture Radar Machine Intelligence Optical Society Approximate Algorithm 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Oppenheim, A.V., Lim, J.S.: The importance of phase in signals. Proceedings of the IEEE 69(5), 529–541 (1981)CrossRefGoogle Scholar
  2. 2.
    Rosen, P., Hensley, S., Joughin, I., Li, F., Madsen, S., Rodriguez, E., Goldstein, R.: Synthetic aperture radar interferometry. Proceedings of the IEEE 88(3), 333–382 (2000)CrossRefGoogle Scholar
  3. 3.
    Jezzard, P., Balaban, R.: Correction for geometric distortion in echo-planar images from B 0 field variations. Magnetic Resonance in Medicine 34, 65–73 (1995)CrossRefGoogle Scholar
  4. 4.
    Pandit, S., Jordache, N., Joshi, G.: Data-dependent systems methodology for noise-insensitive phase unwrapping in laser interferometric surface characterization. Journal of the Optical Society of America 11(10), 2584–2592 (1994)CrossRefGoogle Scholar
  5. 5.
    Ghiglia, D., Pritt, M.: Two-Dimensional Phase Unwrapping. Theory, Algorithms, and Software. John Wiley & Sons, New York (1998)zbMATHGoogle Scholar
  6. 6.
    Itoh, K.: Analysis of the phase unwrapping problem. Applied Optics 21(14) (1982)Google Scholar
  7. 7.
    Goldstein, R., Zebker, H., Werner, C.: Satellite radar interferometry: Two-dimensional phase unwrapping. In: Symposium on the Ionospheric Effects on Communication and Related Systems, Radio Science, vol. 23, pp. 713–720 (1988)Google Scholar
  8. 8.
    Marroquin, J., Rivera, M.: Quadratic regularization functionals for phase unwrapping. Journal of the Optical Society of America 12(11), 2393–2400 (1995)CrossRefMathSciNetGoogle Scholar
  9. 9.
    Buckland, J., Huntley, J., Turner, S.: Unwrapping noisy phase maps by use of a minimum cost matching algorithm. Applied Optics 34(23), 5100–5108 (1995)CrossRefGoogle Scholar
  10. 10.
    Ghiglia, D., Romero, L.: Minimum L p norm two-dimensional phase unwrapping. Journal of the Optical Society of America 13(10), 1999–2013 (1996)CrossRefMathSciNetGoogle Scholar
  11. 11.
    Flynn, T.: Two-dimensional phase unwrapping with minimum weighted discontinuity. Journal of the Optical Society of America A 14(10), 2692–2701 (1997)CrossRefGoogle Scholar
  12. 12.
    Costantini, M.: A novel phase unwrapping method based on network programing. IEEE Transactions on Geoscience and Remote Sensing 36(3), 813–821 (1998)CrossRefMathSciNetGoogle Scholar
  13. 13.
    Strand, J.: Two-dimensional Phase Unwrapping with Applications. PhD thesis, Department of Mathematics, Faculty of Mathematics and Natural Sciences, University of Bergen (1999)Google Scholar
  14. 14.
    Dias, J., Leitão, J.: The ℤπM algorithm for interferometric image reconstruction in SAR/SAS. IEEE Transactions on Image Processing 11, 408–422 (2002)CrossRefGoogle Scholar
  15. 15.
    Marroquin, J., Tapia, M., Rodriguez-Vera, R., Servin, M.: Parallel algorithms for phase unwrapping based on markov random field models. Journal of the Optical Society of America A 12(12), 2578–2585 (1995)CrossRefMathSciNetGoogle Scholar
  16. 16.
    Nico, G., Palubinskas, G., Datcu, M.: Bayesian approach to phase unwrapping: theoretical study. IEEE Transactions on Signal Processing 48(9), 2545–2556 (2000)CrossRefGoogle Scholar
  17. 17.
    Friedlander, B., Francos, J.: Model based phase unwrapping of 2-d signals. IEEE Transactions on Signal Processing 44(12), 2999–3007 (1996)CrossRefGoogle Scholar
  18. 18.
    Fried, D.: Least-squares fitting a wave-front distortion estimate to an array of phase-difference measurements. Journal of the Optical Society of America 67(3), 370–375 (1977)CrossRefGoogle Scholar
  19. 19.
    Ghiglia, D., Romero, L.: Robust two-dimensional weighted and unweighted phase unwrapping that uses fast transforms and iterative methods. Journal of the Optical Society of America A 11, 107–117 (1994)CrossRefGoogle Scholar
  20. 20.
    Chen, C.: Statistical-Cost Network-Flow Approaches to Two-Dimensional Phase Unwrapping for Radar Interferometry. PhD thesis, Stanford University (2001)Google Scholar
  21. 21.
    Leitão, J., Figueiredo, M.: Absolute phase image reconstruction: A stochastic non-linear filtering approach. IEEE Transactions on Image Processing 7(6), 868–882 (1997)CrossRefGoogle Scholar
  22. 22.
    Dias, J., Leitão, J.: Simultaneous phase unwrapping and speckle smoothing in SAR images: A stochastic nonlinear filtering approach. In: EUSAR 1998 European Conference on Synthetic Aperture Radar, Friedrichshafen, May 1998, pp. 373–377 (1998)Google Scholar
  23. 23.
    Bioucas-Dias, J., Valadão, G.: Phase unwrapping via graph cuts. Submitted to IEEE Transactions on Image Processing (2005)Google Scholar
  24. 24.
    Kolmogorov, V., Zabih, R.: What energy functions can be minimized via graph cuts? IEEE Transactions on Pattern Analysis and Machine Intelligence 26(2), 147–159 (2004)CrossRefGoogle Scholar
  25. 25.
    Veksler, O.: Efficient Graph-Based Energy Minimization Method. In: Computer Vision. PhD thesis, Cornell University (1999)Google Scholar
  26. 26.
    Boykov, Y., Veksler, O., Zabih, R.: Fast approximate energy minimization via graph cuts. IEEE Transactions on Pattern Analysis and Machine Intelligence 23(11), 1222–1239 (2001)CrossRefGoogle Scholar
  27. 27.
    Blake, A., Zisserman, A.: Visual Reconstruction. MIT Press, Cambridge (1987)Google Scholar
  28. 28.
    Blake, A.: Comparison of the efficiency of deterministic and stochastic algorithms for visual reconstruction. IEEE Transactions on Pattern Analysis and Machine Intelligence 11(1), 2–12 (1989)zbMATHCrossRefMathSciNetGoogle Scholar
  29. 29.
    Hebert, T., Leahy, R.: A generalized EM algorithm for 3-D Bayesian reconstruction from Poisson data using Gibbs priors. IEEE Trans. on Medical Imaging 8(2), 194–202 (1989)CrossRefGoogle Scholar
  30. 30.
    Geman, S., Reynolds, G.: Constrained restoration and the recovery of discontinuities. IEEE Trans. Pattern Analysis and Machine Intelligence 14(3), 367–383 (1992)CrossRefGoogle Scholar
  31. 31.
    Bouman, C., Sauer, K.: A generalized Gaussian image model for edge-preserving MAP estimation. IEEE Transactions on Image Processing 2(3), 296–310 (1993)CrossRefGoogle Scholar
  32. 32.
    Lange, K.: Optimization. Springer, New York (2004)zbMATHGoogle Scholar
  33. 33.
    Greig, D., Porteous, B., Seheult, A.: Exact maximum a posteriory estimation for binary images. Jounal of Royal Statistics Society B 51(2), 271–279 (1989)Google Scholar
  34. 34.
    Ferrari, P., Gubitoso, M., Neves, E.: Reconstruction of gray-scale images. Methodology and Computing in Applied Probability 3, 255–270 (2001)zbMATHCrossRefMathSciNetGoogle Scholar
  35. 35.
    Wu, Z., Leahy, R.: An optimal graph theoretic approach to data clustering: Theory and its application to image segmentation. IEEE Transactions on Pattern Analysis and Machine Intelligence 15(11), 1101–1113 (1993)CrossRefGoogle Scholar
  36. 36.
    Ishikawa, H.: Exact optimization for markov random fields with convex priors. IEEE Transactions on Pattern Analysis and Machine Intelligence 25(10), 1333–1336 (2003)CrossRefGoogle Scholar
  37. 37.
    Freedman, D., Drineas, P.: Energy minimization via graph cuts: settling what is possible. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition - CVPR 2005, San Diego, CA (June 2005)Google Scholar
  38. 38.
    Rother, C., Kumar, S., Kolmogorov, V., Blake, A.: Digital tapestry. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition - CVPR 2005, San Diego, CA (June 2005)Google Scholar
  39. 39.
    Boykov, Y., Kolmogorov, V.: An experimental comparison of min-cut/max-flow algorithms for energy minimization in vision. IEEE Transactions on Pattern Analysis and Machine Intelligence 26(9), 1124–1137 (2004)CrossRefGoogle Scholar
  40. 40.
    Lim, H., Xu, W., Huang, X.: Two new practical methods for phase unwrapping. In: Proccedings of the 1995 International Geoscience and Remote Sensing Symposium-IGARSS 1995, Firenze, Italy, pp. 196–198 (1995)Google Scholar
  41. 41.
    Flynn, T.: Consistent 2-D phase unwrapping guided by a quality map. In: Proceedings of the 1996 International Geoscience and Remote Sensing Symposium-IGARSS 1996, Lincoln, NE, vol. 4, pp. 2057–2059 (1996)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  • José M. Bioucas-Dias
    • 1
  • Gonçalo Valadão
    • 1
  1. 1.Instituto de TelecomunicaçõesInstituto Superior TécnicoLisboaPortugal

Personalised recommendations