Advertisement

Abstract

We observe that there is a strong connection between a whole class of simple binary MRF energies and the Rudin-Osher-Fatemi (ROF) Total Variation minimization approach to image denoising. We show, more precisely, that solutions to binary MRFs can be found by minimizing an appropriate ROF problem, and vice-versa. This leads to new algorithms. We then compare the efficiency of various algorithms.

Keywords

Image Denoising Projected Gradient Method Binary Problem Coarea Formula Total Variation Minimization 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Alter, F., Caselles, V., Chambolle, A.: A characterization of convex calibrable sets in ℝN. Math. Ann. 332(2), 329–366 (2005)zbMATHCrossRefMathSciNetGoogle Scholar
  2. 2.
    Alter, F., Caselles, V., Chambolle, A.: Evolution of characteristic functions of convex sets in the plane by the minimizing total variation flow. Interfaces Free Bound. 7(1), 29–53 (2005)zbMATHCrossRefMathSciNetGoogle Scholar
  3. 3.
    Bell, W.: A C++ implementation of a Max Flow-Graph Cut algorithm. Computer Science Dept., Cornell University (November 2001), available at http://www.cs.cornell.edu/vision/wbell/
  4. 4.
    Bouchitté, G.: Recent convexity arguments in the calculus of variations. In: Lecture Notes from the 3rd Int. Summer School on the Calculus of Variations, Pisa (1998)Google Scholar
  5. 5.
    Boykov, Y., Kolmogorov, V.: An experimental comparison of min-cut/max-flow algorithms for energy minimization in vision. IEEE Trans. Pattern Analysis and Machine Intelligence 26(9), 1124–1137 (2004)CrossRefGoogle Scholar
  6. 6.
    Boykov, Y., Veksler, O., Zabih, R.: Fast approximate energy minimization via graph cuts. In: International Conference on Computer Vision, September 1999, pp. 377–384 (1999)Google Scholar
  7. 7.
    Caselles, V., Chambolle, A.: Anisotropic curvature-driven flow of convex sets. Technical Report 528, CMAP, Ecole Polytechnique (2004)Google Scholar
  8. 8.
    Chambolle, A.: An algorithm for mean curvature motion. Interfaces Free Bound 6(2), 195–218 (2004)zbMATHCrossRefMathSciNetGoogle Scholar
  9. 9.
    Chambolle, A.: An algorithm for total variation minimization and applications. J. Math. Imaging Vision 20(1-2), 89–97 (2004); Special issue on mathematics and image analysisMathSciNetGoogle Scholar
  10. 10.
    Chan, T.F., Esedoglu, S.: Aspects of total variation regularized L1 function approximation. Technical Report 04-07, UCLA CAM (February 2004)Google Scholar
  11. 11.
    Chan, T.F., Esedoglu, S., Nikolova, M.: Algorithms for finding global minimizers of image segmentation and denoising models. Technical Report 04-54, UCLA CAM (September 2004)Google Scholar
  12. 12.
    Darbon, J., Sigelle, M.: Exact optimization of discrete constrained total variation minimization problems. In: Klette, R., Žunić, J. (eds.) IWCIA 2004. LNCS, vol. 3322, pp. 548–557. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  13. 13.
    Darbon, J., Sigelle, M.: A fast and exact algorithm for total variation minimization. In: Marques, J.S., Pérez de la Blanca, N., Pina, P. (eds.) IbPRIA 2005. LNCS, vol. 3522, pp. 351–359. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  14. 14.
    Greig, D.M., Porteous, B.T., Seheult, A.H.: Exact maximum a posteriori estimation for binary images. J. R. Statist. Soc. B 51, 271–279 (1989)Google Scholar
  15. 15.
    Ishikawa, H.: Exact optimization for Markov random fields with convex priors. IEEE Trans. Pattern Analysis and Machine Intelligence 25(10), 1333–1336 (2003)CrossRefGoogle Scholar
  16. 16.
    Ishikawa, H., Geiger, D.: Segmentation by grouping junctions. In: IEEE Conf. Computer Vision and Pattern Recognition, pp. 125–131 (1998)Google Scholar
  17. 17.
    Kolmogorov, V., Zabih, R.: Multi-camera scene reconstruction via graph cuts. In: European Conference on Computer Vision, May 2002, vol. 3, pp. 82–96 (2002)Google Scholar
  18. 18.
    Kolmogorov, V., Zabih, R.: What energy functions can be minimized via graph cuts? IEEE Trans. Pattern Analysis and Machine Intelligence 2(26), 147–159 (2004)CrossRefGoogle Scholar
  19. 19.
    Paris, S., Sillion, F., Quan, L.: A surface reconstruction method using global graph cut optimization. International Journal of Computer Vision (2005) (to appear)Google Scholar
  20. 20.
    Poggi, G., Ragozini, A.R.P.: Image segmentation by tree-structured Markov random fields. IEEE Signal Processing Letters 6, 155–157 (1999)CrossRefGoogle Scholar
  21. 21.
    Rivera, M., Gee, J.C.: Two-level MRF models for image restoration and segmentation. In: Proc. British Machine Vision Conference, London, September 2004, vol. 2, pp. 809–818 (2004)Google Scholar
  22. 22.
    Roy, S., Cox, I.J.: A maximum-flow formulation of the n-camera stereo correspondence problem. In: ICCV, pp. 492–502 (1998)Google Scholar
  23. 23.
    Rudin, L.I., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. Physica D 60, 259–268 (1992)zbMATHCrossRefGoogle Scholar
  24. 24.
    Scarpa, G., Poggi, G., Zerubia, J.: A binary tree-structured MRF model for multispectral satellite image segmentation. Rapport de recherche RR-5062, INRIA Sophia Antipolis (December 2003)Google Scholar
  25. 25.
    Zalesky, B.A.: Network flow optimization for restoration of images. J. Appl. Math. 2(4), 199–218 (2002)zbMATHCrossRefMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  • Antonin Chambolle
    • 1
  1. 1.CMAP (CNRS UMR 7641)Ecole PolytechniquePalaiseau CedexFrance

Personalised recommendations