Skip to main content

Adaptive Simulated Annealing for Energy Minimization Problem in a Marked Point Process Application

  • Conference paper
Energy Minimization Methods in Computer Vision and Pattern Recognition (EMMCVPR 2005)

Abstract

We use marked point processes to detect an unknown number of trees from high resolution aerial images. This is in fact an energy minimization problem, where the energy contains a prior term which takes into account the geometrical properties of the objects, and a data term to match these objects to the image. This stochastic process is simulated via a Reversible Jump Markov Chain Monte Carlo procedure, which embeds a Simulated Annealing scheme to extract the best configuration of objects.

We compare here different cooling schedules of the Simulated Annealing algorithm which could provide some good minimization in a short time. We also study some adaptive proposition kernels.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Andrieu, C., Breyer, L.A., Doucet, A.: Convergence of Simulated Annealing using Foster-Lyapunov Criteria. Journal of Applied Probability 38(4), 975–994 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  2. Azencott, R. (ed.): Simulated Annealing. Parallelization Techniques. John Wiley and Sons, Chichester (1992)

    MATH  Google Scholar 

  3. Baddeley, A., Van Lieshout, M.N.M.: Stochastic Geometry Models in High-level Vision. In: Mardia, K.V. (ed.) Statistics and Images, vol. 1, pp. 231–256 (1993)

    Google Scholar 

  4. Boese, K.D., Kahng, A.B.: Best-so-far vs Where-you-are: Implications for Optimal Finite Time Annealing. System and Control Letters 22, 71–78 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  5. Cerny, V.: Thermodynamical Approach to the Traveling Salesman Problem: an Efficient Simulation Algorithm. Journal of Optimization Theory and Applications 45(1), 41–51 (1985)

    Article  MATH  MathSciNet  Google Scholar 

  6. Descombes, X., Kruggel, F., Lacoste, C., Ortner, M., Perrin, G., Zerubia, J.: Marked Point Process in Image Analysis: from Context to Geometry. In: SPPA Conference, Castellon, Spain (April 2004) (invited paper)

    Google Scholar 

  7. Fachat, A.: A Comparison of Random Walks with Different Types of Acceptance Probabilities. PhD thesis, University of Chemnitz, Germany (May 2000)

    Google Scholar 

  8. Gelfand, S.B., Mitter, S.K.: Metropolis-type Annealing Algorithms for Global Optimization in R d. SIAM Journal of Control and Optimization 31(1), 111–131 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  9. Geman, S., Geman, D.: Stochastic Relaxation, Gibbs Distributions and Bayesian Restoration of Images. IEEE PAMI 6, 721–741 (1984)

    MATH  Google Scholar 

  10. Geyer, C.J., Moller, J.: Likelihood Inference for Spatial Point Processes. In: Barndoff Nielsen, O.E., Kendall, W.S., van Lieshout, M.N.M. (eds.) Stochastic Geometry, Likelihood and Computation. Chapmann and Hall, London (1998)

    Google Scholar 

  11. Gougeon, F.A.: Automatic Individual Tree Crown Delineation using a Valley-following Algorithm and Rule-based System. In: Hill, D.A., Leckie, D.G. (eds.) Proc. of the International Forum on Automated Interpretation of High Spatial Resolution Digital Imagery for Forestry, Victoria, British Columbia, Canada, February 1998, pp. 11–23 (1998)

    Google Scholar 

  12. Green, P.J.: Reversible Jump Markov Chain Monte Carlo Computation and Bayesian Model Determination. Biometrika 82, 711–732 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  13. Haario, H., Saksman, E.: Simulated Annealing Process in General State Space. Advances Applied Probability 23, 866–893 (1991)

    Article  MATH  MathSciNet  Google Scholar 

  14. Hajek, B.: Cooling Schedules for Optimal Annealing. Mathematics of Operations Research 13(2), 311–329 (1985)

    Article  MathSciNet  Google Scholar 

  15. Halmos, P.R.: Measure Theory. Springer, Heidelberg (1950)

    MATH  Google Scholar 

  16. Ingber, L.: Adaptive Simulated Annealing: Lessons Learned. Control and Cybernetics 25(1), 33–54 (1996)

    MATH  Google Scholar 

  17. Kirkpatrick, S., Gelatt, C.D., Vecchi, M.P.: Optimization by Simulated Annealing. Science 4598, 220, 671–680 (1983)

    Article  MathSciNet  Google Scholar 

  18. Larsen, M.: Individual Tree Top Position Estimation by Template Voting. In: Proc. of the Fourth International Airborne Remote Sensing Conference and Exhibition / 21st Canadian Symposium on Remote Sensing, Ottawa, Ontario, June 1999, vol. 2, pp. 83–90 (1999)

    Google Scholar 

  19. Locatelli, M.: Simulated Annealing Algorithms for Continuous Global Optimization: Convergence Conditions. Journal of Optimization Theory and Applications 104, 121–133 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  20. Ortner, M.: Processus Ponctuels Marqués pour l’Extraction Automatique de Caricatures de Bâtiments à partir de Modèles Numériques d’Élévation. PhD thesis, University of Nice-Sophia Antipolis, France (October 2004) (in French)

    Google Scholar 

  21. Ortner, M., Descombes, X., Zerubia, J.: A Reversible Jump MCMC Sampler for Object Detection in Image Processing. In: MC2QMC Conference, Antibes Juan Les Pins, France. LNS-Springer, Heidelberg (2004)

    Google Scholar 

  22. Perrin, G., Descombes, X., Zerubia, J.: Point Processes in Forestry: an Application to Tree Crown Detection. Research Report 5544, INRIA (April 2005)

    Google Scholar 

  23. Salamon, P., Sibani, P., Frost, R.: Facts, Conjectures, and Improvements for Simulated Annealing. In: SIAM Monographs on Mathematical Modeling and Computation. Society for Industrial and Applied Mathematics, Philadelphia (2002)

    Google Scholar 

  24. Stoica, R., Gregori, P., Mateu, J.: Simulated Annealing and Object Point Processes: Tools for Analysis of Spatial Patterns. Technical Report 69, University Jaume I, Castellon, Spain (2004)

    Google Scholar 

  25. Strenski, P.N., Kirkpatrick, S.: Analysis of Finite Length Annealing Schedules. Algorithmica 6, 346–366 (1991)

    Article  MATH  MathSciNet  Google Scholar 

  26. Szu, H., Hartley, R.: Fast Simulated Annealing. Physics Letters A 122(3-4), 157–162 (1987)

    Article  Google Scholar 

  27. Tafelmayer, R., Hoffmann, K.H.: Scaling Features in Complex Optimization Problems. Computer Physics Communications 86, 81–90 (1995)

    Article  MATH  Google Scholar 

  28. Tu, Z.W., Zhu, S.C.: Image Segmentation by Data-Driven Markov Chain Monte Carlo. IEEE PAMI 24(5) (2002)

    Google Scholar 

  29. van Laarhoven, P.J.M., Aarts, E.H.L.: Simulated Annealing: Theory and Applications. D. Reidel, Boston (1987)

    MATH  Google Scholar 

  30. van Lieshout, M.N.M.: Stochastic Annealing for Nearest Neighbour Point Process with Application to Object Recognition. Technical Report BS-R9306, Centruum vor Wiskunde en Informatica, Amsterdam (1993)

    Google Scholar 

  31. van Lieshout, M.N.M.: Markov Point Processes and their Applications. Imperial College Press, London (2000)

    Book  MATH  Google Scholar 

  32. Varanelli, J.M.: On the Acceleration of Simulated Annealing. PhD thesis, University of Virginia, Charlottesville, USA (May 1996)

    Google Scholar 

  33. White, S.R.: Concepts of Scale in Simulated Annealing. In: IEEE Proc. of the 1984 International Conference on Computer Design, pp. 646–651 (1984)

    Google Scholar 

  34. Winkler, G.: Image Analysis, Random Fields and Markov Chain Monte Carlo Methods, 2nd edn. Springer, Heidelberg (2003)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Perrin, G., Descombes, X., Zerubia, J. (2005). Adaptive Simulated Annealing for Energy Minimization Problem in a Marked Point Process Application. In: Rangarajan, A., Vemuri, B., Yuille, A.L. (eds) Energy Minimization Methods in Computer Vision and Pattern Recognition. EMMCVPR 2005. Lecture Notes in Computer Science, vol 3757. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11585978_1

Download citation

  • DOI: https://doi.org/10.1007/11585978_1

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-30287-2

  • Online ISBN: 978-3-540-32098-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics