Advertisement

Grid Computing Methodology for Protein Structure Prediction and Analysis

  • Shoubin Dong
  • Pengfei Liu
  • Yicheng Cao
  • Zhengping Du
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3759)

Abstract

In the post-genomics era, the protein structure prediction and analysis based on the amino acids sequence is becoming an essential part of biological research. The protein structure prediction belongs to CPU-intensive and memory demanding jobs. We have developed a prediction and analysis system named ProteinSPA, which employs the workflow under the grid environment to integrates multiple bioinformatics analytical tools and perform on huge volumes of data. In this paper, we explain the design, architecture, and implementation of ProteinSPA.

Keywords

Structure Alignment Computational Node Grid Environment Protein Structure Prediction Grid Technology 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Guo, J., Ellrott, K., Chung, W.J., Xu, D., Passovets, S., Xu, Y.: PROSPECT-PSPP: an automatic computational pipeline for protein structure prediction. Nucleic Acids Research 32, 522–525 (2004)CrossRefGoogle Scholar
  2. 2.
    Shah, M., Passovets, S., Kim, D., Ellrott, K., Wang, L., Volkler, I., LoCascio, P., Xu, D., Xu, Y.: A Computational Pipeline for Protein Structure Prediction and Analysis at Genome Scale. Bioinformatics 19, 1985–1996 (2003)CrossRefGoogle Scholar
  3. 3.
  4. 4.
    Foster, I., Kesselman, C. (eds.): The grid: blueprint for a new computing infrastructure. Morgan Kaufmann Publishers Inc., San Francisco (1999)Google Scholar
  5. 5.
    GGF, Life Science Grid Research Group, http://people.cs.uchicago.edu/dangulo/LSG/
  6. 6.
    National Center for Biotechnology Information, http://www.ncbi.nlm.nih.gov/
  7. 7.
    The globus project, http://www.globus.org/
  8. 8.
    EUROGRID Project, http://www.eurogrid.org/
  9. 9.
  10. 10.
    China Research and Education Grid (ChinaGrid), http://www.chinagrid.edu.cn
  11. 11.
    PDB: Protein Data Bank, http://www.rcsb.org/pdb/
  12. 12.
  13. 13.
    Baxevanis, A.D., Ouellette, B.F.F.: Bioinformatics: A Practical Guide to the Analysis of genes and Proteins (1998)Google Scholar
  14. 14.
    Fiser, A., Do, R.K., Sali, A.: Modeling of loops in protein structures. Protein Sci. 9, 1753–1773 (2000)CrossRefGoogle Scholar
  15. 15.
  16. 16.
  17. 17.
  18. 18.
    ChinaGrid Supporting Platform, http://www.chinagrid.edu.cn/CGSP/
  19. 19.
    Zhang, Y., Skolnick, J.: Scoring function for automated assessment of protein structure template quality. Proteins (2004)Google Scholar
  20. 20.
    Levitt, M., Gerstein, M.: A unified statistical framework for sequence comparison and structure comparison. In: Proc. Natl. Acad. Sci., USA, vol. 95, pp. 5913–5920 (1998)Google Scholar
  21. 21.
    Zemla, A., Venclovas, C., Moult, J., Fidelis, K.: Processing and analysis of CASP3 protein structure predictions. Proteins 3, 22–29 (1999)CrossRefGoogle Scholar
  22. 22.
    Siew, N., Elofsson, A., Rychlewski, L., Fischer, D.: MaxSub: an automated measure for the assessment of protein structure prediction quality. Bioinformatics 16, 776–785 (2000)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  • Shoubin Dong
    • 1
  • Pengfei Liu
    • 1
  • Yicheng Cao
    • 2
  • Zhengping Du
    • 2
  1. 1.School of Computer Science and EngineeringSouth China University of TechnologyGuangzhouChina
  2. 2.School of Bioscience and BioengineeringSouth China University of TechnologyGuangzhouChina

Personalised recommendations