Fast Scalable Algorithm on LARPBS for Sequence Alignment

  • Ling Chen
  • Chen Juan
  • Yi Pan
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3759)


Linear array with reconfigurable pipelined bus system (LARPBS) is a parallel computational model based on the optical bus system. In this paper, an O(1) time algorithm on LARPBS for prefix computation based on the maximum operation is presented. We also present a fast and efficient sequence alignment algorithm on LARPBS. For two sequences with length of m, n respectively, the algorithm can be implemented in O(mn/p) time with p processors(1≤p≤max{m,n}). Since the time complexity of the algorithm can be adjusted by choosing different number of processors p , the algorithm is highly scalable.


Time Complexity Parallel Algorithm Systolic Array Optimal Alignment Longe Common Subsequence 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Chen, Z., Guo-Liang, C.: Parallel algorithms for approximate string matching on PRAM and LARPBS. Journal of Software 15(2) (2004)Google Scholar
  2. 2.
    Gotoh, O.: An improved algorithm for matching biological sequences. J. Molec. Biol. 162, 705–708 (1982)CrossRefGoogle Scholar
  3. 3.
    Mayers, E.W., Miller, W.: Optimal Alignment in Linear Space. Comput. Appl. Biosci. 4(1), 11–17 (1998)Google Scholar
  4. 4.
    Hirschberg, D.S.: A Linear Space Algorithm for Computing Maximal Common Subsequences. Commun. ACM 18(6), 341–343 (1975)zbMATHCrossRefMathSciNetGoogle Scholar
  5. 5.
    Aggarwal, A., Park, J.: Notes on Searching in Multidimensional Monotone Arrays. In: Proc. 29th Ann. IEEE Symp. Foundations of Comput. Sci., pp. 497–512 (1988)Google Scholar
  6. 6.
    Apostolico, A., Atallah, M., Larmore, L., Mcfaddin, S.: Efficient Parallel Algorithms for String Editing and Related Problems. SIAM J. Computing 19, 968–988 (1990)zbMATHCrossRefMathSciNetGoogle Scholar
  7. 7.
    Lu, M., Lin, H.: Parallel Algorithms for the Longest Common Subsequence Problem. IEEE Transaction on Parallel and Distributed System 5(8) (August 1994)Google Scholar
  8. 8.
    Robert, Y., Tchuente, M.: A Sytolic Array for the Longest Common Subsequence Problem. Inform. Process. Lett. 21, 191–198 (1985)zbMATHCrossRefMathSciNetGoogle Scholar
  9. 9.
    Chang, J.H., Ibarra, O.H., Pallis, M.A.: Parallel Parsing on a one-way array of finite-state machines. IEEE Trans. Computers C-36, 64–75 (1987)Google Scholar
  10. 10.
    Luce, G., Myoupo, J.F.: Systolic-based Parallel Architecture for the Longest Common Subsequences Problem. Integration 25(1), 53–70 (1998)zbMATHMathSciNetGoogle Scholar
  11. 11.
    Freschi, V., Bogliolo, A.: Longest Common Subsequence between Run-length-encoded Strings: a New Algorithm with Improved Parallelism. Information Processing Letters 90(4), 167–173 (2004)zbMATHCrossRefMathSciNetGoogle Scholar
  12. 12.
    Pan, Y., Li, K.: Linear Array with a Reconfigurable Pipelined Bus System – Concepts and Applications. Journal of Information Science 106, 237–258 (1998)CrossRefGoogle Scholar
  13. 13.
    Aluru, S., Futamura, N., Mehrotra, K.: Parallel Biological Sequence Comparison Using Prefix Computations. Journal of Parallel and Distributed Computing 63(3), 264–272 (2003)zbMATHCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  • Ling Chen
    • 1
    • 2
  • Chen Juan
    • 1
  • Yi Pan
    • 3
  1. 1.Department of Computer ScienceYangzhou UniversityYangzhouP.R. China
  2. 2.National Key Lab of Novel Software TechNanjing UniversityNanjingP.R. China
  3. 3.Department of Computer ScienceGeorgia State UniversityAtlantaU.S.A.

Personalised recommendations