Advertisement

Dynamic Delaunay Triangulation for Wireless Ad Hoc Network

  • Ming Li
  • XiCheng Lu
  • Wei Peng
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3756)

Abstract

Geometric routing protocols benefit from localized Delaunay triangulation, which can guarantee the delivery of packet and bound the length of route. In this paper we propose a localized algorithm to build Delaunay triangulation in wireless ad hoc network. The algorithm considers not only stationary situation but also dynamic situation in which nodes can dynamically join and leave the network. The communication cost of the algorithm is O(nlogn). Therefore, our algorithm is applicable in wireless sensor network, in which nodes dynamically join and leave network. We also prove the correctness of the algorithm.

Keywords

Topology control ad hoc network Delaunay Triangulation geometric routing protocols 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Urrutia, J.: Routing with Guaranteed Delivery in Geometric and Wireless Networks. In: Stojmenovic, I. (ed.) Handbook of Wireless Networks and Mobile Computing, vol. 18, pp. 393–406. John Wiley & Sons, Chichester (2002)CrossRefGoogle Scholar
  2. 2.
    Bose, P., Morin, P.: Online Routing in Triangulations. In: Aggarwal, A.K., Pandu Rangan, C. (eds.) ISAAC 1999. LNCS, vol. 1741, pp. 113–122. Springer, Heidelberg (1999)CrossRefGoogle Scholar
  3. 3.
    Bose, P., Devroye, L., Evans, W., Kirkpatrick, D.: On the spanning ratio of gabriel graphs and beta-skeletons. In: Rajsbaum, S. (ed.) LATIN 2002. LNCS, vol. 2286, p. 479. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  4. 4.
    Gao, J., Guibas, L.J., Hershberger, J., Zhang, L., Zhu, A.: Geometric spanners for routing in mobile networks. In: MobiHoc 2001 (2001)Google Scholar
  5. 5.
    Li, X.-Y., Calinescu, G., Wan, P.-J.: Distributed construction of a planar spanner and routing for ad hoc wireless networks. In: IEEE Infocom 2002, New York (June 2002)Google Scholar
  6. 6.
    Yao, A.C.-C.: On constructing minimum spanning trees in k-dimensional spaces and related problems. SIAM J. Computing 11, 721–736 (1982)zbMATHCrossRefGoogle Scholar
  7. 7.
    Keil, J.M., Gutwin, C.A.: Classes of graphs which approximate the complete euclidean graph. Discrete Computational Geometry 7 (1992)Google Scholar
  8. 8.
    Keil, J.M., Gutwin, C.A.: The Delaunay triangulation closely approximates the complete euclidean graph. In: Dehne, F., Santoro, N., Sack, J.-R. (eds.) WADS 1989. LNCS, vol. 382. Springer, Heidelberg (1989)Google Scholar
  9. 9.
    Dobkin, D.P., Friedman, S.J., Supowit, K.J.: Delaunay graphs are almost as good as complete graphs. Discrete Computational Geometry (1990)Google Scholar
  10. 10.
    Kranakis, E., Singh, H., Urrutia, J.: Compass Routing on Geometric Networks. In: Proc. 11th Canadian Conference on Computational Geometry, pp. 51–54 (1999)Google Scholar
  11. 11.
    Karp, B., Kung, H.T.: GPSR: Greedy perimeter stateless routing for wireless networks. In: Proceedings of the 6th Annual International Conference on Mobile Computing and Networking (MOBICOM 2000), N.Y, August 6-11, pp. 243–254. ACM Press, New York (2000)CrossRefGoogle Scholar
  12. 12.
    Bose, P., Morin, P., Stojmenovic, I., Urrutia, J.: Routing with guaranteed delivery in ad hoc wireless networks. ACM/Kluwer Wireless Networks 7(6), 609–616 (2001); 3rd int. Workshop on Discrete Algorithms and methods for mobile computing and communications, pp. 48–55 (1999) zbMATHCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  • Ming Li
    • 1
  • XiCheng Lu
    • 1
  • Wei Peng
    • 1
  1. 1.School of Computer ScienceNational University of Defense TechnologyHunanChina

Personalised recommendations