Test-Suite Reduction Using Genetic Algorithm

  • Xue-ying Ma
  • Bin-kui Sheng
  • Cheng-qing Ye
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3756)


As the software is modified and new test cases are added to the test-suite, the size of the test-suite grows and the cost of regression testing increases. In order to decrease the cost of regression testing, researchers have researched on the use of test-suite reduction techniques, which identify a subset of test cases that provides the same coverage of the software, according to some criterion, as the original test-suite. This paper investigates the use of an evolutionary approach, called genetic algorithms, for test-suite reduction. The algorithm builds the initial population based on test history, calculates the fitness value using coverage and cost information, and then selectively breeds the successive generations using genetic operations. This generational process is repeated until a minimized test-suite is founded. The results of studies show that, genetic algorithms can significantly reduce the size of the test-suite and the cost of regression testing, and achieves good cost-effectiveness.


Test-suite reduction Regression testing Genetic algorithm Gene modeling Cost-effectiveness 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Chen, Y., Lau, M.F.: Dividing Strategies for the Optimization of a Test Suite. Information Processing Letters 60(3), 135–141 (1996)zbMATHCrossRefMathSciNetGoogle Scholar
  2. 2.
    Chen, Y., Rosenblum, D., Vo, K.: TestTube: A System for Selective Regression Testing. In: Proc. 16th Int’l Conf. Software Eng., May 1994, pp. 211–222 (1994)Google Scholar
  3. 3.
    Jones, J.A., Harrold, M.J.: Test-Suite Reduction and Prioritization for Modified Condition/Decesion Coverage. IEEE Trans. On Software Engineering 29(3), 195–209 (2003)CrossRefGoogle Scholar
  4. 4.
    Borgelt, K.: Software Test Data Generation From a Genetic Algorithm, Industrial Applications of Genetic Algorithms. CRC Press, Boca Raton (1998)Google Scholar
  5. 5.
    Lin, J., Yeh, P.: Automatic Test Data. Generation for Path Testing using GAs. Information Sciences 131, 47–64 (2001)zbMATHCrossRefGoogle Scholar
  6. 6.
    Csondes, T., Kotnyek, B.: Greedy Algorithm For The Test Selection Problem In Protocol Conformance Testing. Journal of Circuit, System and Computers 11(3), 273–281 (2002)CrossRefGoogle Scholar
  7. 7.
    Harrold, M.J., Gupta, R., Soffa, M.L.: A Methodlogy for Controlling the Size of a Test Suite. ACM Trans. Software Eng. And Methods 2(3), 270–285 (1993)CrossRefGoogle Scholar
  8. 8.
    Offutt, J., Pan, J., Voas, J.M.: Procedures for Reducing the size of Coverage-Based Test Sets. In: Proc. 12th int’l Conf. Testing Computer Software, June 1995, pp. 111–123 (1995)Google Scholar
  9. 9.
    Rothermel, G., Harrold, M.J.: A Safe, Efficient Regression Test Selection Techinique. ACM Trans. Software Eng. And Methods 6(2), 173–210 (1997)CrossRefGoogle Scholar
  10. 10.
    Rothermel, G., Harrold, M.J., Ostria, J., Hong, C.: An Empirical Study of the Effects of Minimization on the Fault Detection Capabilities of Test Suites. In: Proc. Int’l Conf. Software Maintenance, pp. 34–43 (November 1998)Google Scholar
  11. 11.
    Rothermel, G., Harrol, M.J.: Selecting Tests and Identifying Test Coverage Requirement for Modified Software. In: Proceedings of the 1994 international symposium on Software testing and analysis, Seattle, Washington, United States, pp. 169–184 (1994)Google Scholar
  12. 12.
    Wong, W.E., Horgan, J.R., London, S., Mathur, A.P.: Effect of Test Set Minimization on Fault Detection Effectiveness. Software Practice and Experience 28(4), 347–369 (1998)CrossRefGoogle Scholar
  13. 13.
    Berndt, D., Fisher, J., Johnson, L., Pinglikar, J., Watkins, A.: Breeding Software Test Cases with Genetic Algorithms. In: Proceedings of the 36th Hawaii International Conference on System Sciences (HICSS 36), Track, January 6-9, vol. 9, p. 338a (2003)Google Scholar
  14. 14.
    Goldberg, D.E.: Genetic Algorithms in Search. Optimization and Machine Learning. Addison-Wesley, Reading (1989)zbMATHGoogle Scholar
  15. 15.
    Holland, J.H.: Adaptation in Natural and Artificial Systems. University of Michigan Press, Ann Arbor (1975)Google Scholar
  16. 16.
    Watkins, A.: The Automatic Generation of Software. Test Data using Genetic Algorithms. In: Proceedings of the Fourth Software Quality Conference, Dundee, Scotland, July 1995, vol. 2, pp. 300–309 (1995)Google Scholar
  17. 17.
    Jian-Jun, Y., Wei-Dong, C., Cheng-Qing, Y., Yun-He, P.: Design and Implementation of Testing Tools for Context-Free Languages. Journal of Computer Research & Development 37(11), 1375–1382 (2000)Google Scholar
  18. 18.
    MA, X., CHEN, W., YANG, J., YE, C.: Block-based Test Data Adequacy Measurement Criteria and Test Complexity Metrics. Journal Of Computer Science 29(5), 141–143 (2002)Google Scholar
  19. 19.
    Roper, M.: CAST with GAs (Genetic Algorithms) - Automatic Test Data Generation via. Evolutionary Computation. In: IEE Colloquium on Computer Aided Software Testing Tools, digest no. 96/096 (April 1996)Google Scholar
  20. 20.
    Pargas, R., Harrold, M., Peck, R.: Test data generation using genetic algorithms. Software Testing Verification & Reliability 9(4), 263–282 (1999)CrossRefGoogle Scholar
  21. 21.
    Michael, C., McGraw, G., Schatz, M.: Generating Software Test Data by Evolution. IEEE Transactions On Software Engineering 27(12), 1085–1110 (2001)CrossRefGoogle Scholar
  22. 22.
    Wegener, J., Baresel, A., Sthamer, H.: Evolutionary Test Environment for Automatic Structural Testing. Information and Software Technology, Special Issue devoted to the Application of Metaheuristic Algorithms to Problems in Software Engineering 43, 841–854 (2001)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  • Xue-ying Ma
    • 1
    • 2
  • Bin-kui Sheng
    • 2
  • Cheng-qing Ye
    • 1
  1. 1.College of Computer Science and TechnologyZhejiang UniversityHangzhouP. R. China
  2. 2.Dept. of Information ManagementZhejiang University of Finance & EconomicsHangzhouP. R. China

Personalised recommendations