Advertisement

Contention-Free Communication Scheduling for Irregular Data Redistribution in Parallelizing Compilers

  • Kun-Ming Yu
  • Chi-Hsiu Chen
  • Ching-Hsien Hsu
  • Chang Wu Yu
  • Chiu Kuo Liang
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3756)

Abstract

The data redistribution problems on multi-computers had been extensively studied. Irregular data redistribution has been paid attention recently since it can distribute different size of data segment of each processor to processors according to their own computation capability. High Performance Fortran Version 2 (HPF-2) provides GEN_BLOCK data distribution method for generating irregular data distribution. In this paper, we develop an efficient scheduling algorithm, Smallest Conflict Points Algorithm (SCPA), to schedule HPF2 irregular array redistribution. SCPA is a near optimal scheduling algorithm, which satisfies the minimal number of steps and minimal total messages size of steps for irregular data redistribution.

Keywords

Irregular data redistribution communication scheduling GEN_BLOCK conflict points 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Guo, M.: Communication Generation for Irregular Codes. The Journal of Supercomputing 25(3), 199–214 (2003)zbMATHCrossRefGoogle Scholar
  2. 2.
    Guo, M., Nakata, I., Yamashita, Y.: Contention-Free Communication Scheduling for Array Redistribution. Parallel Computing 26(8), 1325–1343 (2000)zbMATHCrossRefGoogle Scholar
  3. 3.
    Guo, M., Nakata, I., Yamashita, Y.: An Efficient Data Distribution Technique for Distributed Memory Parallel Computers. In: Minyi Guo, I. (ed.) JSPP 1997, pp. 189–196 (1997)Google Scholar
  4. 4.
    Guo, M., Pan, Y., Liu, Z.: Symbolic Communication Set Generation for Irregular Parallel Applications. The Journal of Supercomputing 25, 199–214 (2003)zbMATHCrossRefGoogle Scholar
  5. 5.
    Lee, S., Yook, H., Koo, M., Park, M.: Processor reordering algorithms toward efficient GEN_BLOCK redistribution. In: Proceedings of the ACM symposium on Applied computing, pp. 539–543 (2001)Google Scholar
  6. 6.
    Hsu, C.-H., Yu, K.-M., Chen, C.-H., Yu, C.W., Liang, C.K.: Optimal Processor Replacement for Efficient Communication of Runtime Data Redistribution. In: Cao, J., Yang, L.T., Guo, M., Lau, F. (eds.) ISPA 2004. LNCS, vol. 3358, pp. 268–273. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  7. 7.
    Hsu, C.-H., Yang, D.-L., Chung, Y.-C., Dow, C.-R.: A Generalized Processor Mapping Technique for Array Redistribution. IEEE Transactions on Parallel and Distributed Systems 12(7), 743–757 (2001)CrossRefGoogle Scholar
  8. 8.
    Ramaswamy, S., Simons, B., Banerjee, P.: Optimization for Efficient Data redistribution on Distributed Memory Multicomputers. Journal of Parallel and Distributed Computing 38, 217–228 (1996)zbMATHCrossRefGoogle Scholar
  9. 9.
    Wakatani, A., Wolfe, M.: Optimization of Data redistribution for Distributed Memory Multicomputers. short communication, Parallel Computing 21(9), 1485–1490 (1995)zbMATHCrossRefGoogle Scholar
  10. 10.
    Wang, H., Guo, M., Chen, W.: An Efficient Algorithm for Irregular Redistribution in Parallelizing Compilers. In: Guo, M. (ed.) ISPA 2003. LNCS, vol. 2745. Springer, Heidelberg (2003)Google Scholar
  11. 11.
    Wang, H., Guo, M., Wei, D.: Divide-and-conquer Algorithm for Irregular Redistributions in Parallelizing Compilers. The Journal of Supercomputing 29(2), 157–170 (2004)zbMATHCrossRefGoogle Scholar
  12. 12.
    Yook, H.-G., Park, M.-S.: Scheduling GEN_BLOCK Array Redistribution. In: Proceedings of the IASTED International Conference Parallel and Distributed Computing and Systems (November 1999)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  • Kun-Ming Yu
    • 1
  • Chi-Hsiu Chen
    • 1
  • Ching-Hsien Hsu
    • 1
  • Chang Wu Yu
    • 1
  • Chiu Kuo Liang
    • 1
  1. 1.Department of Computer Science and Information EngineeringChung Hua UniversityHsinchuTaiwan, ROC

Personalised recommendations