Skip to main content

A Study of Detecting Social Interaction with Sensors in a Nursing Home Environment

  • Conference paper
Book cover Computer Vision in Human-Computer Interaction (HCI 2005)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 3766))

Included in the following conference series:

Abstract

Social interaction plays an important role in our daily lives. It is one of the most important indicators of physical or mental diseases of aging patients. In this paper, we present a Wizard of Oz study on the feasibility of detecting social interaction with sensors in skilled nursing facilities. Our study explores statistical models that can be constructed to monitor and analyze social interactions among aging patients and nurses. We are also interested in identifying sensors that might be most useful in interaction detection; and determining how robustly the detection can be performed with noisy sensors. We simulate a wide range of plausible sensors using human labeling of audio and visual data. Based on these simulated sensors, we build statistical models for both individual sensors and combinations of multiple sensors using various machine learning methods. Comparison experiments are conducted to demonstrate the effectiveness and robustness of the sensors and statistical models for detecting interactions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aggarwal, J.K., Cai, Q.: Human Motion Analysis: A Review. Computer Vision and Image Understanding 73, 428–440 (1999)

    Article  Google Scholar 

  2. Brank, J., Grobelnik, M., Milic-Frayling, N., Mladenic, D.: Feature selection using linear support vector machines. MSR-TR-2002-63, Microsoft research (2002)

    Google Scholar 

  3. Bregler, C.: Learning and Recognizing Human Dynamics in Video Sequences. In: CVPR, pp. 568–574 (1997)

    Google Scholar 

  4. Brumitt, B., Krumm, J., Meyers, B., Shafer, S.: Ubiquitous computing and the role of geometry. In: Special Issue on Smart Spaces and Environments. IEEE Personal Communications, vol. 7-5, pp. 41–43 (October 2000)

    Google Scholar 

  5. Carp, F.: Assessing the environment. Annul review of gerontology and geriatrics 14, 302–314 (1994)

    Google Scholar 

  6. Clarkson, B., Pentland, A.: Framing Through Peripheral Perception. In: Proc. of ICIP, Vancouver (September 2000)

    Google Scholar 

  7. Clarkson, B., Pentland, A.: Unsupervised Clustering of Ambulatory Audio and Video. In: Proc. of the ICASSP, Phoenix (1998)

    Google Scholar 

  8. Emler, N.: Gossip, reputation, and social adaptation. In: Goodman, R.F., Ben-Ze’ev, A. (eds.) Good Gossip, pp. 117–138. University Press of Kansas, Wichita (1994)

    Google Scholar 

  9. Eppig, F.J., Poisal, J.A.: Mental health of medicare beneficiaries: 1995. Health Care Financing Review 15, 207–210 (1995)

    Google Scholar 

  10. Essa, I., Pentland, A.: Facial expression recognition using a dynamic model and motion energy. In: Proc. 5th Intl. Conf. on Computer Vision, pp. 360–367 (1995)

    Google Scholar 

  11. Freeman, W.T., Roth, M.: Orientation histograms for hand gesture recognition. In: International Workshop on Automatic Face and Gesture Recognition, pp. 296–301 (June 1995)

    Google Scholar 

  12. Friedman, J., Hastie, T., Tibshirani, R.: Additive logistic regression: a statistical view of boosting. Annals of Statistics 28, 307–337 (2000)

    Article  MathSciNet  Google Scholar 

  13. German, P.S., Rovner, B.W., Burton, L.C., Brant, L.J., Clark, R.: The role of mental morbidity in the nursing home experience. Gerontologist 32(2), 152–158 (1992)

    Google Scholar 

  14. Hastie, T., Tibshirani, R.: Nonpararmetric logistic and proportional odds regression. Applied statistics 36, 260–276 (1987)

    Article  Google Scholar 

  15. Harter, A., Hopper, A., Steggles, P., Ward, A., Webster, P.: The anatomy of a contextaware application. In: Proceedings of the 5th Annual ACM/IEEE International Conference on Mobile Computing and Networking, Seattle, WA, pp. 59–68 (August 1999)

    Google Scholar 

  16. Holmquist, L., Falk, J., Wigstrm, J.: Supporting group collaboration with interpersonal awareness devices. Personal Technologies 3, 13–21 (1999)

    Article  Google Scholar 

  17. Hooyman, N.R., Kiyak, H.: Social Gerontology: A Multidisciplinary Perspective, 6th edn. Allyn and Bacon (2002)

    Google Scholar 

  18. Hudson, S., Fogarty, J., Atkeson, C., Avrahami, D., Forlizzi, J., Kiesler, S., Lee, J., Yang, J.: Predicting Human Interruptibility with Sensors: A Wizard of Oz Feasibility Study. In: Proc. of the SIGCHI Conference on Human Factors in Computing Systems, pp. 257–264 (2003)

    Google Scholar 

  19. Jug, M., Pers, J., Dezman, B., Kovacic, S.: Trajectory based assessment of coordinated human activity. In: ICVS 2003, pp. 534–543 (2003)

    Google Scholar 

  20. Kidd, C.D., Orr, R., Abowd, G.D., Atkeson, C.G., Essa, I.A., Macintyre, B., Mynatt, E., Starner, T.E., Newstetter, W.: The Aware Home: A Living Laboratory for Ubiquitous Computing Research. In: Streitz, N.A., Hartkopf, V. (eds.) CoBuild 1999. LNCS, vol. 1670, pp. 191–198. Springer, Heidelberg (1999)

    Chapter  Google Scholar 

  21. Koile, K., Tollmar, K., Demirdjian, D., Shrobe, H.E., Darrell, T.: Activity Zones for Context- Aware Computing. In: Dey, A.K., Schmidt, A., McCarthy, J.F. (eds.) UbiComp 2003. LNCS, vol. 2864, pp. 90–106. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  22. Kononenko, I.: Semi-naive bayesian classifier. In: Proceedings of sixth European Working Session on Learning, pp. 206–219. Springer, Heidelberg (1991)

    Google Scholar 

  23. Lee, S., Mase, K.: Activity and location recognition using wearable sensors. In: 1st IEEE International Conference on Pervasive Computing and Communications, pp. 24–32 (2002)

    Google Scholar 

  24. Lubinski, R.: Dementia and communication. In: B. C, Decker, Philadelphia (1991)

    Google Scholar 

  25. Margineantu, D.D., Dietterich, T.G.: Pruning adaptive boosting. In: 14th Int. Conf. on Machine Learning, pp. 211–218. Morgan Kaufmann, San Francisco (1997)

    Google Scholar 

  26. Martin, A., Karrray, L., Gilloire, A.: High Order Statistics for Robust Speech/Non- Speech Detection. In: Eusipco, Tampere, Finland, pp. 469–472 (September 2000)

    Google Scholar 

  27. Nelson, J.: The influence of environmental factors in incidents of disruptive behavior. Journal of Gerontological Nursing 21(5), 19–24 (1995)

    Google Scholar 

  28. Quinlan, J.R.: C4.5: programs for machine learning. Morgan Kaufmann, San Francisco (1993)

    Google Scholar 

  29. Rhodes, B.: The wearable remembrance agent: A system for augmented memory. In: Proceedings of the 1st International Symposium on Wearable Computers, pp. 123–128 (1997)

    Google Scholar 

  30. Schraudolph, N., Sejnowski, T.J.: Unsupervised discrimination of clustered data via optimization of binary information gain. In: Hanson, S.J., Cowan, J.D., Lee Giles, C. (eds.) Advances in Neural Information Processing Systems, vol. 5, pp. 499–506. Morgan Kaufmann, San Mateo (1993)

    Google Scholar 

  31. Sloane, P.D., Mitchell, C.M., Long, K., Lynn, M.: TESS 2+ Instrument B: Unit observation checklist – physical environment: A report on the psychometric properties of individual items, and initial recommendations on scaling. University of North Carolina (1995)

    Google Scholar 

  32. Steele, C., Rovner, B.W., Chase, G.A., Folstein, M.: Psychiatric symptoms and nursing home placement in Alzheimer’s disease. American Journal of Psychiatry 147(8), 1049–1051 (1990)

    Google Scholar 

  33. Stauffer, C., Grimson, W.E.L.: Adaptive background mixture models for real-time tracking. In: Proc. of CVPR 1999 (1999)

    Google Scholar 

  34. Time Domain Corporation, 7057 Old Madison Pike, Huntsville, AL 35806. PulsON Technology: Time Modulated Ultra Wideband Overview (2001)

    Google Scholar 

  35. Vapnik, V.N.: The nature of statistical learning theory. Springer, New York (1995)

    MATH  Google Scholar 

  36. Zhang, D., Li, S.Z., Gatica-Perez, D.: Real-Time Face Detection Using Boosting Learning in Hierarchical Feature Spaces. In: 17th International Conference on Pattern Recognition (2004)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Chen, D., Yang, J., Wactlar, H. (2005). A Study of Detecting Social Interaction with Sensors in a Nursing Home Environment. In: Sebe, N., Lew, M., Huang, T.S. (eds) Computer Vision in Human-Computer Interaction. HCI 2005. Lecture Notes in Computer Science, vol 3766. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11573425_20

Download citation

  • DOI: https://doi.org/10.1007/11573425_20

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-29620-1

  • Online ISBN: 978-3-540-32129-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics