Skip to main content

Focal Activity in Simulated LQT2 Models at Rapid Ventricular Pacing: Analysis of Cardiac Electrical Activity Using Grid-Based Computation

  • Conference paper
Biological and Medical Data Analysis (ISBMDA 2005)

Part of the book series: Lecture Notes in Computer Science ((LNBI,volume 3745))

Included in the following conference series:

Abstract

This study investigated the involvement of ventricular focal activity and dispersion of repolarization in LQT2 models at rapid rates. The Luo-Rudy dynamic model was used to simulate ventricular tissues. LQT2 syndrome due to genetic mutations was modeled by modifying the conductances of delayed rectifier potassium currents. Cellular automata was employed to generate virtual tissues coupled with midmyocardial (M) cell clusters. Simulations were conducted using grid-based computation. Under LQT2 conditions, early after-depolarizations (EADs) occurred first at the border of the M refractory zone in epicardium coupled with M clusters, but spiked off from endocardial cells in endocardium coupled with M clusters. The waveform of EADs was affected by the topological distribution of M clusters. Our results explain why subepicardial and subendocardial cells could exhibit surprisingly EADs when adjacent to M cells and suggest that phase 2 EADs are responsible for the onset of Torsade de Pointes at rapid ventricular pacing.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Roden, D.M., Lazzara, R., et al.: Multiple Mechanisms in the Long-QT Syndrome: Current Knowledge, Gaps, and Future Directions. Circulation 94(8), 1996–2012 (1996)

    Google Scholar 

  2. Noda, T., Shimizu, W., et al.: Classification and mechanism of Torsade de Pointes initiation in patients with congenital long QT syndrome. Eur. Heart J. 25(23), 2149–2154 (2004)

    Article  Google Scholar 

  3. Viskin, S.: Long QT syndromes and torsade de pointes. Lancet 354(9190), 1625–1633 (1999)

    Article  Google Scholar 

  4. Viskin, S., Alla, S.R., et al.: Mode of onset of torsade de pointes in congenital long QT syndrome. J. Am. Coll. Cardiol 28(5), 1262–1268 (1996)

    Article  Google Scholar 

  5. Antzelevitch, C., Shimizu, W.: Cellular mechanisms underlying the long QT syndrome. Curr.Opin. Cardiol 17(1), 43–51 (2002)

    Article  Google Scholar 

  6. Burashnikov, A., Antzelevitch, C.: Acceleration-induced action potential prolongation and early afterdepolarizations. J. Cardiovasc Electrophysiol 9(9), 934–948 (1998)

    Article  Google Scholar 

  7. Akar, F.G., Yan, G.X., et al.: Unique topographical distribution of M cells underlies reentrant mechanism of torsade de pointes in the long-QT syndrome. Circulation 105(10), 1247–1253 (2002)

    Article  Google Scholar 

  8. Viskin, S.: Torsades de Pointes. Curr. Treat Options Cardiovasc Med. 1(2), 187–195 (1999)

    Article  Google Scholar 

  9. Keating, M.T., Sanguinetti, M.C.: Molecular and cellular mechanisms of cardiac arrhythmias. Cell 104(4), 569–580 (2001)

    Article  Google Scholar 

  10. Antzelevitch, C.: Molecular biology and cellular mechanisms of Brugada and long QT syndromes in infants and young children. J. Electrocardiol. 34 (Suppl.), 177–181 (2001)

    Article  Google Scholar 

  11. Henry, H., Rappel, W.J.: The role of M cells and the long QT syndrome in cardiac arrhythmias: simulation studies of reentrant excitations using a detailed electrophysiological model. Chaos 14(1), 172–182 (2004)

    Article  Google Scholar 

  12. Anyukhovsky, E.P., Sosunov, E.A., Rosen, M.R.: Regional Differences in Electrophysiological Properties of Epicardium, Midmyocardium, and Endocardium: In Vitro and In Vivo Correlations. Circulation 94(8), 1981–1988 (1996)

    Google Scholar 

  13. Gropp, W., Lusk, E., et al.: A high-performance, portable implementation of the MPI Message-Passing Interface standard. Parallel Computing 22(6), 789–828 (1996)

    Article  MATH  Google Scholar 

  14. Clayton, R.H., Holden, A.V.: Dispersion of cardiac action potential duration and the initiation of re-entry: A computational study. Biomed. Eng. Online 4(1), 11 (2005)

    Article  Google Scholar 

  15. Luo, C.H., Rudy, Y.: A dynamic model of the cardiac ventricular action potential. I. Simulations of ionic currents and concentration changes. Circ. Res. 74(6), 1071–1096 (1994)

    Google Scholar 

  16. Nerbonne, J.M., Guo, W.: Heterogeneous expression of voltage-gated potassium channels in the heart: roles in normal excitation and arrhythmias. J. Cardiovasc Electrophysiol. 13(4), 406–409 (2002)

    Article  Google Scholar 

  17. Viswanathan, P.C., Shaw, R.M., Rudy, Y.: Effects of IKr and IKs heterogeneity on action potential duration and its rate dependence: a simulation study. Circulation 99(18), 2466–2474 (1999)

    Google Scholar 

  18. Wolfram, S.: Cellular automata as models of complexity. Nature 311, 419–424 (1984)

    Article  Google Scholar 

  19. Pormann, J. B., Henriquez, C.S., et al.: Computer Simulation of Cardiac Electrophysiology. In: Proc. SC 2000 (2000)

    Google Scholar 

  20. Huffaker, R., Lamp, S.T., et al.: Intracellular calcium cycling, early afterdepolarizations, and reentry in simulated long QT syndrome. Heart Rhythm 1(4), 441–448 (2004)

    Article  Google Scholar 

  21. Yan, G.X., Wu, Y., et al.: Phase 2 early afterdepolarization as a trigger of polymorphic ventricular tachycardia in acquired long-QT syndrome: direct evidence from intracellular recordings in the intact left ventricular wall. Circulation 103(23), 2851–2856 (2001)

    Google Scholar 

  22. Sanguinetti, M.C., Curran, M.E., et al.: Spectrum of HERG K+-channel dysfunction in an inherited cardiac arrhythmia. PNAS 93(5), 2208–2212 (1996)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Wang, C., Krause, A., Nugent, C., Dubitzky, W. (2005). Focal Activity in Simulated LQT2 Models at Rapid Ventricular Pacing: Analysis of Cardiac Electrical Activity Using Grid-Based Computation. In: Oliveira, J.L., Maojo, V., Martín-Sánchez, F., Pereira, A.S. (eds) Biological and Medical Data Analysis. ISBMDA 2005. Lecture Notes in Computer Science(), vol 3745. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11573067_31

Download citation

  • DOI: https://doi.org/10.1007/11573067_31

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-29674-4

  • Online ISBN: 978-3-540-31658-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics