Skip to main content

Gossip-Based Greedy Gaussian Mixture Learning

  • Conference paper
Advances in Informatics (PCI 2005)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 3746))

Included in the following conference series:

Abstract

It has been recently demonstrated that the classical EM algorithm for learning Gaussian mixture models can be successfully implemented in a decentralized manner by resorting to gossip-based randomized distributed protocols. In this paper we describe a gossip-based implementation of an alternative algorithm for learning Gaussian mixtures in which components are added to the mixture one after another. Our new Greedy Gossip-based Gaussian mixture learning algorithm uses gossip-based parallel search, starting from multiple initial guesses, for finding good components to add to the mixture in each component allocation step. It can be executed on massive networks of small computing devices, converging to a solution exponentially faster than its centralized version, while reaching the same quality of generated models.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. McLachlan, G.J., Peel, D.: Finite Mixture Models. John Wiley & Sons, Chichester (2000)

    Book  MATH  Google Scholar 

  2. Moore, A.W.: Very fast EM-based mixture model clustering using multiresolution kd-trees. In: Advances in Neural Information Processing Systems, vol. 11. MIT Press, Cambridge (1999)

    Google Scholar 

  3. Tipping, M.E., Bishop, C.M.: Mixtures of probabilistic principal component analysers. Neural Computation 11(2), 443–482 (1999)

    Article  Google Scholar 

  4. Titsias, M., Likas, A.: Shared kernel models for class conditional density estimation. IEEE Trans. Neural Networks 12(5), 987–997 (2001)

    Article  Google Scholar 

  5. Dempster, A.P., Laird, N.M., Rubin, D.B.: Maximum likelihood from incomplete data via the EM algorithm. J. Roy. Statist. Soc. B 39, 1–38 (1977)

    MATH  MathSciNet  Google Scholar 

  6. Meila, M., Heckerman, D.: An experimental comparison of several clustering and initialization methods. In: Proc. 14th Ann. Conf. on Uncertainty in Artificial Intelligence, San Francisco, CA, pp. 386–395 (1998)

    Google Scholar 

  7. Li, J.Q., Barron, A.R.: Mixture density estimation. In: Advances in Neural Information Processing Systems, vol. 12. The MIT Press, Cambridge (2000)

    Google Scholar 

  8. Vlassis, N., Likas, A.: A greedy EM algorithm for Gaussian mixture learning. Neural Processing Letters 15(1), 77–87 (2002)

    Article  MATH  Google Scholar 

  9. Verbeek, J.J., Vlassis, N., Kröse, B.: Efficient greedy learning of Gaussian mixture models. Neural Computation 15(2), 469–485 (2003)

    Article  MATH  Google Scholar 

  10. Ueda, N., Nakano, R., Ghahramani, Z., Hinton, G.E.: SMEM algorithm for mixture models. Neural Computation 12, 2109–2128 (2000)

    Article  Google Scholar 

  11. Kowalczyk, W., Vlassis, N.: Newscast EM. In: Saul, L.K., Weiss, Y., Bottou, L. (eds.) Advances in Neural Information Processing Systems, vol. 17. MIT Press, Cambridge (2005)

    Google Scholar 

  12. Neal, R.M., Hinton, G.E.: A view of the EM algorithm that justifies incremental, sparse, and other variants. In: Jordan, M.I. (ed.) Learning in graphical models, pp. 355–368. Kluwer Academic Publishers, Dordrecht (1998)

    Google Scholar 

  13. Karp, R., Schindelhauer, C., Shenker, S., Vöcking, B.: Randomized rumour spreading. In: Proc. 41th IEEE Symp. on Foundations of Computer Science, Redondo Beach, CA (2000)

    Google Scholar 

  14. Kempe, D., Dobra, A., Gehrke, J.: Gossip-based computation of aggregate information. In: Proc. 44th IEEE Symp. on Foundations of Computer Science, Cambridge, MA (2003)

    Google Scholar 

  15. Boyd, S., Ghosh, A., Prabhakar, B., Shah, D.: Gossip algorithms: Design, analysis and applications. In: Proc. IEEE Infocom, Miami, FL (2005)

    Google Scholar 

  16. Forman, G., Zhang, B.: Distributed data clustering can be efficient and exact. ACM SIGKDD Explorations 2(2), 34–38 (2000)

    Article  Google Scholar 

  17. Nowak, R.D.: Distributed EM algorithms for density estimation and clustering in sensor networks. IEEE Trans. on Signal Processing 51(8), 2245–2253 (2003)

    Article  Google Scholar 

  18. Dasgupta, S.: Learning mixtures of Gaussians. In: Proc. IEEE Symp. on Foundations of Computer Science, New York (1999)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Vlassis, N., Sfakianakis, Y., Kowalczyk, W. (2005). Gossip-Based Greedy Gaussian Mixture Learning. In: Bozanis, P., Houstis, E.N. (eds) Advances in Informatics. PCI 2005. Lecture Notes in Computer Science, vol 3746. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11573036_33

Download citation

  • DOI: https://doi.org/10.1007/11573036_33

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-29673-7

  • Online ISBN: 978-3-540-32091-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics