Skip to main content

Dynamic Voltage Scaling for Power Aware Fast Fourier Transform (FFT) Processor

  • Conference paper
Advances in Computer Systems Architecture (ACSAC 2005)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 3740))

Included in the following conference series:

Abstract

In recent years, power dissipation in CMOS circuits has grown exponentially due to the fast technology scaling and the increase in complexity. Supply Voltage scaling is an effective technique to reduce dynamic power dissipation due to the non-linear relationship between dynamic power and Vdd. In other words, Vdd can be scaled freely except with limitation for below threshold voltage operation. The dynamic voltage scaling architecture mainly consists of dc-dc power regulator which is customised to produce variability on the Vdd. The implemented architecture can dynamically vary the Vdd from 300 mV to 1.2V, with initial setup time of 1.5 μsec. This paper investigates the effect of DVS on dynamic power dissipation in a Fast Fourier Transform multiplier core. Implementation of DVS on the multiplier blocks has shown 25% of average power reduction. The design was implemented using 0.12μm ST-Microelectronic 6-metal layer CMOS dual- process technology.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Cooley, J.W., Tukey, J.W.: An Algorithm for the machine calculation of complexFourier series. Math. Comput. 19, 297–301 (1965)

    Article  MATH  MathSciNet  Google Scholar 

  2. Rabey, J.M., et al.: Digital Integrated Circuits, A Design Perspective, 2nd edn. Pearson Education Inc., London (2003)

    Google Scholar 

  3. Fitrio, D., Stojcevski, A., Singh, J.: Subthreshold leakage current reduction techniquesfor static random access memory. In: Smart Structures, Devices, and Systems II, vol. 5649, pp. 673–683 (2005)

    Google Scholar 

  4. Horiguchi, M., Sakata, T., Itoh, K.: Switched-Source-Impedance CMOS Circuit forLow Standby Subthreshold Current Giga-Scale LSI’s. IEEE J. Solid State Circuits 28, 1131–1135 (1993); Kao, J.C., Antoniadis, A. D.: Transistor Sizing Issues and Tools for Multi-Threshold

    Article  Google Scholar 

  5. CMOS Technology. DAC Proceedings (1997)

    Google Scholar 

  6. Kawaguchi, H., Nose, K., Sakurai, T.: A Super Cut-Off CMOS (SCCMOS) Scheme for 0.5-V Supply Voltage with Pico-ampere Stand-By Current. IEEE J. Solid-State Circuits 35, 1498–1501 (2000)

    Article  Google Scholar 

  7. Kawahara, T., et al.: Subthreshold Current Reduction for Decoded-Driver by Self-Reverse Biasing. IEEE J. Solid State Circuits 28, 1136–1144 (1993)

    Article  Google Scholar 

  8. Smith, S.W.: The Scientist and Engineer’s Guide to Digital Signal Processing. California Technical Publishing (1998)

    Google Scholar 

  9. Baek, J.H., Son, B.S., Jo, B.G., Sunwoo, M.H., Oh, S.K.: A continuous flow mixed-radix FFT architecture with an in-place algorithm (2003)

    Google Scholar 

  10. Lihong, J., Yonghong, G., Jouni, I., Hannu, T.: A new VLSI-oriented FFT algorithm and implementation (1998)

    Google Scholar 

  11. Melander, J., Widhe, T., Palmkvist, K., Vesterbacka, M., Wanhammar, L.: An FFT processor based on the SIC architecture with asynchronous PE (1996)

    Google Scholar 

  12. Kulkarni, G.R., Udpikar, V.: An integrated facility for data acquisition and analysis of biomedical signals. Case studies on VEP, IVS (1995)

    Google Scholar 

  13. Lin, W., Mittra, E., Berman, C., Rubin, C., Qin, Y.X.: Measurement of ultrasoundphase velocity in trabecular bone using adaptive phase tracking (2002)

    Google Scholar 

  14. Lisha, S., Minfen, S., Chan, F.H.Y.: A method for estimating the instantaneous frequency of non-stationary heart sound signals (2003)

    Google Scholar 

  15. Moller, F., Bisgaard, N., Melanson, J.: Algorithm and architecture of a 1 V low powerhearing instrument DSP (1999)

    Google Scholar 

  16. Baugh, C., Wooley, B.: A two’s complement parallel array multiplication algorithm. IEEE Trans. Comput. C 22, 1045–1047 (1973)

    Article  MATH  Google Scholar 

  17. Yang, S., Powell, M.D., Falsafi, B., Roy, K., Vijaykumar, T.N.: An integrated circuit/architecture approach to reducing leakage in deep-submicron high-performance I-caches. Int. Symp. High Performance Computer Architecture (2001)

    Google Scholar 

  18. Powell, M., Se-Hyun, Y., Falsafi, B., Roy, K., Vijaykumar, N.: Reducing leakage in a high-performance deep-submicron instruction cache. IEEE Transactions on Very Large Scale Integration (VLSI) Systems 9, 77 (2001)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Fitrio, D., Singh, J., Stojcevski, A. (2005). Dynamic Voltage Scaling for Power Aware Fast Fourier Transform (FFT) Processor. In: Srikanthan, T., Xue, J., Chang, CH. (eds) Advances in Computer Systems Architecture. ACSAC 2005. Lecture Notes in Computer Science, vol 3740. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11572961_6

Download citation

  • DOI: https://doi.org/10.1007/11572961_6

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-29643-0

  • Online ISBN: 978-3-540-32108-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics