Skip to main content

Fast 3D Brain Segmentation Using Dual-Front Active Contours with Optional User-Interaction

  • Conference paper
Book cover Computer Vision for Biomedical Image Applications (CVBIA 2005)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 3765))

Abstract

Important attributes of 3D brain segmentation algorithms include robustness, accuracy, computational efficiency, and facilitation of user interaction, yet few algorithms incorporate all of these traits. Manual segmentation is highly accurate but tedious and laborious. Most automatic techniques, while less demanding on the user, are much less accurate. It would be useful to employ a fast automatic segmentation procedure to do most of the work but still allow an expert user to interactively guide the segmentation to ensure an accurate final result.

We propose a novel 3D brain cortex segmentation procedure utilizing dual-front active contours, which minimize image-based energies in a manner that yields more global minimizers compared to standard active contours. The resulting scheme is not only more robust but much faster and allows the user to guide the final segmentation through simple mouse clicks which add extra seed points. Due to the global nature of the evolution model, single mouse clicks yield corrections to the segmentation that extend far beyond their initial locations, thus minimizing the user effort. Results on 15 simulated and 20 real 3D brain images demonstrate the robustness, accuracy, and speed of our scheme compared with other methods.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Kass, M., Witkin, A., Terzopoulos, D.: Snakes: Active contour models. International Journal of Computer Vision 1, 321–332 (1988)

    Article  Google Scholar 

  2. Malladi, R., Sethian, J.: A geometric approach to segmentation and analysis of 3d medical images. In: Processings of Mathematical Methods in Biomedical Image Analysis, MMBIA 1996 (1996)

    Google Scholar 

  3. Davatzikos, C., Bryan, R.: Using a deformable surface model to obtain a shape representation of the cortex. IEEE Trans. on Medical Imaging 15, 785–795 (1996)

    Article  Google Scholar 

  4. Teo, P., Sapiro, G., Wandell, B.: Creating connected representations of cortical gray matter for functional mri visualization. IEEE Trans. on Medical Imaging 16, 852–863 (1997)

    Article  Google Scholar 

  5. Dale, A., Fischl, B., Sereno, M.: Cortical surface-based analysis. NeuroImage 9, 179–194 (1999)

    Article  Google Scholar 

  6. Xu, C., Pham, D., Rettmann, M., Yu, D., Prince, J.: Reconstruction of the human cerebral cortex from magnetic resonance images. IEEE Trans. on Medical Imaging 18, 467–480 (1999)

    Article  Google Scholar 

  7. Zeng, X., Staib, L., Schultz, R., Duncan, J.: Segmentation and measurement of the cortex from 3D MR images using coupled surfaces propagation. IEEE Transactions on Medical Imaging 18, 100–111 (1999)

    Article  Google Scholar 

  8. Goldenberg, R., Kimmel, R., Rivlin, E., Rudzsky, M.: Cortex segmentation: A fast variational geometric approach. IEEE Trans. on Medical Imaging 21, 1544–1551 (2002)

    Article  Google Scholar 

  9. Pham, D., Prince, J.: Adaptive fuzzy segmentation of magnetic resonance images. IEEE Trans. on Medical Imaging 18, 737–752 (1999)

    Article  Google Scholar 

  10. Liew, A., Yan, H.: An adaptive spatial fuzzy clustering algorithm for 3d mr image segmentation. IEEE Trans. on Medical Imaging 22, 1063–1075 (2003)

    Article  Google Scholar 

  11. Marroquin, J., Vemuri, B., et al.: An accurate and efficient bayesian method for automatic segmentation of brain mri. IEE Trans. on Medical Imaging 21, 934–945 (2002)

    Article  Google Scholar 

  12. Zhang, Y., Brady, M., Smith, S.: Segmentation of brain mr images through a hidden markov random field model and the expectation maximization algorithm. IEEE Trans. on Medical Imaging 20, 45–57 (2001)

    Article  Google Scholar 

  13. Ruan, S., Moretti, B., Fadili, J., Bloyet, D.: Fuzzy markovian segmentation in application of magnetic resonance images. Computer Vision and Image Understanding 85, 54–69 (2002)

    Article  MATH  Google Scholar 

  14. Leemput, K.V., Maes, F., Vandermeulen, D., Suetens, P.: Automated model-based tissue classification of mr images of the brain. IEEE Trans. on Medical Imaging 18, 897–908 (1999)

    Article  Google Scholar 

  15. Kapur, T., Grimson, W., et al.: Segmentation of brain tissue from magnetic resonance images. Medical Image Analysis 1, 109–127 (1996)

    Article  Google Scholar 

  16. Li, H., Elmoataz, A., Fadili, J., Ruan, S.: Dual front evolution model and its application in medical imaging. In: Barillot, C., Haynor, D.R., Hellier, P. (eds.) MICCAI 2004. LNCS, vol. 3216, pp. 103–110. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  17. BrainWeb: Mcconnell brain imaging center, montreal neurological institute, http://www.bic.mni.mcgill.ca/brainweb/

  18. Bezdek, J.: Pattern Recognition with Fuzzy Objective Functions Algorithms. Plenum (1981)

    Google Scholar 

  19. Cocosco, C., Kollokian, V., Kwan, R., Evans, A.: Brainweb: Online interface to a 3D MRI simulated brain database. NeuroImage 5, S425 (1997)

    Google Scholar 

  20. Perona, P., Malik, J.: Scale-space and edge detection using anisotropic diffusion. IEEE Trans. on PAMI 12, 629–639 (1990)

    Google Scholar 

  21. Filipek, P., Richelme, C., Kennedy, D., Caviness, V.: The young adult human brain: an mri-based morphometric analysis. Cerebral Cortex 4, 344–360 (1994)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Li, H., Yezzi, A., Cohen, L.D. (2005). Fast 3D Brain Segmentation Using Dual-Front Active Contours with Optional User-Interaction. In: Liu, Y., Jiang, T., Zhang, C. (eds) Computer Vision for Biomedical Image Applications. CVBIA 2005. Lecture Notes in Computer Science, vol 3765. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11569541_34

Download citation

  • DOI: https://doi.org/10.1007/11569541_34

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-29411-5

  • Online ISBN: 978-3-540-32125-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics