Skip to main content

Analyzing Anatomical Structures: Leveraging Multiple Sources of Knowledge

  • Conference paper
Computer Vision for Biomedical Image Applications (CVBIA 2005)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 3765))

Abstract

Analysis of medical images, especially the extraction of anatomical structures, is a critical component of many medical applications: surgical planning and navigation, and population studies of anatomical shapes for tracking disease progression are two primary examples. We summarize recent trends in segmentation and analysis of shapes, highlighting how different sources of information have been factored into current approaches.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Cline, H., Lorensen, W., Kikinis, R., Jolesz, F.: Three-dimensional segmentation of MR images of the head using probability and connectivity. Journal of Computer Assisted Tomography 14(6), 1037–1045 (1990)

    Article  Google Scholar 

  2. Kohn, M.I., Tanna, N.K., Hermann, G.T., Resnick, S.M., Mozley, P.D., Gur, R.E., Alavi, A., Zimmerman, R.A., Gur, R.C.: Analysis of brain and cerebrospinal fluid volumes with MR imaging. Part I. Methods, reliability, and validation. Radiology 178, 115–122 (1991)

    Google Scholar 

  3. Lim, L.O., Pfefferbaum, A.: Segmentation of MR brain images into cerebrospinal fluid spaces, white and gray matter. J. Comput. Assisted Tomography. 13, 588 (1989)

    Article  Google Scholar 

  4. Vannier, M.W., Pilgram, T.K., Speidal, C.M., Neumann, L.R., Rickman, D.L., Schertz, L.D.: Validation of magnetic resonance imaging (MRI) multispectral tissue classification. Computer Medical Imaging and Graphics 15, 217–223 (1991)

    Article  Google Scholar 

  5. Brechbuhler, C., Gerig, G., Szekely, G.: Compensation of spatial inhomogeneity in MRI based on a multi-valued image model and a parametric bias estimate. In: Höhne, K.H., Kikinis, R. (eds.) VBC 1996. LNCS, vol. 1131, pp. 141–146. Springer, Heidelberg (1996)

    Chapter  Google Scholar 

  6. Wells, W., Grimson, W.E.L., Kikinis, R., Jolesz, F.: Statistical intensity correlation and segmentation of MRI Data. Visualization in Biomedical Computing (1994)

    Google Scholar 

  7. Van Leemput, K., Maes, F., Vanermeulen, D., Suetens, P.: Automated model-based bias field correction of MR images of the brain. IEEE TMI 18(10), 885–895 (1999)

    Google Scholar 

  8. Kapur, T., Grimson, W.E.L., Wells, W.M., Kikinis, R.: Enhanced spatial priors for segmentation of magnetic resonance imagery. In: Wells, W.M., Colchester, A.C.F., Delp, S.L. (eds.) MICCAI 1998. LNCS, vol. 1496, pp. 457–468. Springer, Heidelberg (1998)

    Google Scholar 

  9. Leahy, R., Hebert, T., Lee, R.: Applications of Markov random field models in medical imaging. In: Proceedings of IMPI 1989, pp. 1–14 (1989)

    Google Scholar 

  10. Fischl, B., Salat, D.H., Busa, E., Albert, M., Dieterich, M., Haselgrove, C., van der Kouwe, A., Killiany, R., Kennedy, D., Klaveness, S., Montillo, A., Makris, N., Rosen, B., Dale, A.M.: Whole brain segmentation: Automated labeling of neuroanatomical structures in the human brain. Neuron 33 (2002)

    Google Scholar 

  11. Pohl, K.M., Wells, W.M., Guimond, A., Kasai, K., Shenton, M.E., Kikinis, R., Grimson, W.E.L., Warfield, S.K.: Incorporating non-rigid registration into expectation maximization algorithm to segment MR images. In: Dohi, T., Kikinis, R. (eds.) MICCAI 2002. LNCS, vol. 2488, pp. 564–572. Springer, Heidelberg (2002)

    Chapter  Google Scholar 

  12. Pohl, K.M., Bouix, S., Kikinis, R., Grimson, W.E.L.: Anatomical guided segmentation with non-stationary tissue class distributions in an Expectation-Maximization Framework. In: IEEE International Symposium on Biomedical Imaging, Arlington, VA, pp. 81–84 (2004)

    Google Scholar 

  13. Christensen, G., Rabbitt, R., Miller, M.: Deformable templates using large deformation kinematics. IEEE Trans. on Image Processing 5(10), 1435–1447 (1996)

    Article  Google Scholar 

  14. Christensen, G.: Consistent linear-elastic transformations for image matching. In: Kuba, A., Sámal, M., Todd-Pokropek, A. (eds.) IPMI 1999. LNCS, vol. 1613, p. 224. Springer, Heidelberg (1999)

    Chapter  Google Scholar 

  15. Christensen, G.E., He, J.: Consistent nonlinear elastic image registration. In: IEEE MMBIA, Kauai, Hawaii, December 2001, pp. 37–43 (2001)

    Google Scholar 

  16. Collins, D.L., Holmes, C.J., Peters, T.M., Evans, A.C.: Automatic 3D model-based neuroanatomical segmentation. Human Brain Mapping 3(3), 190–208 (1995)

    Article  Google Scholar 

  17. Grenander, G., Miller, M.: Representations of knowledge in complex systems. Journal of the Royal Statistical Society B 56, 249–603 (1993)

    Google Scholar 

  18. Bajcsy, R., Kovacic, S.: Multiresolution elastic matching. Computer Vision, Graphics, and Image Processing 46, 1–21 (1989)

    Article  Google Scholar 

  19. Warfield, S., Robatino, A., Dengler, J., Jolesz, F., Kikinis, R.: Nonlinear registration and template driven segmentation. In: Toga, A.W. (ed.) Brain warping (Progressive Publishing Alternatives),  Ch.4, pp. 67–84 (1998)

    Google Scholar 

  20. Edwards, P., Hill, D., Little, J., Hawkes, D.: Deformation for image-guided interventions using a three component tissue model. Medical Image Analysis 2(4), 355–367 (1998)

    Article  Google Scholar 

  21. Little, J., Hill, D., Hawkes, D.: Deformations Incorporating Rigid Structures. Mathematical Methods in Biomedical Image Analysis (1996)

    Google Scholar 

  22. Maintz, J., Viergever, M.: A survey of medical image registration. Medical Image Analysis 2(1), 1–36 (1998)

    Article  Google Scholar 

  23. Cootes, T.F., Edwards, G.J., Taylor, C.J.: Active appearance models. In: Burkhardt, H., Neumann, B. (eds.) ECCV 1998. LNCS, vol. 1407, pp. 484–498. Springer, Heidelberg (1998)

    Chapter  Google Scholar 

  24. Cootes, T.F., Edwards, G.J., Taylor, C.J.: Active appearance models. IEEE Transactions on Pattern Analysis and Machine Intelligence 23(6), 681–685 (2001)

    Article  Google Scholar 

  25. Kass, M., Witkin, A., Terzopoulos, D.: Snakes: Active contour models. IJCV 1, 321–331 (1988)

    Article  Google Scholar 

  26. Cohen, L.: On active contour models and balloons. CVGIP: IU 53(2), 211–218 (1991)

    Article  MATH  Google Scholar 

  27. McInerney, T., Terzopoulos, D.: Medical image segmentation using topologically adaptable surfaces. In: Conf. Computer Vision, Virtual Reality, and Robotics in Medicine and Medical Robotics and Computer-Assisted Surgery (CVRMed-MRCAS), pp. 23–32 (1997)

    Google Scholar 

  28. Guo, Y., Vemuri, B.: Hybrid geometric active models for shape recovery in medical images. In: Int’l Conf. Inf. Proc. in Med. Imaging, pp. 112–125. Springer, Heidelberg (1999)

    Chapter  Google Scholar 

  29. Cootes, T., Taylor, C., Cooper, D., Graham, J.: Training models of shape from sets of examples. In: Proceedings British Machine Vision Conference, pp. 9–18. Springer, Heidelberg (1992)

    Google Scholar 

  30. Cootes, T., Taylor, C., Cooper, D., Graham, J.: Active shape models - their training and application. In: Computer Vision and Image Understanding (1995)

    Google Scholar 

  31. Cootes, T., Beeston, C., Edwards, G., Taylor, C.: Unified framework for atlas matching using active appearance models. In: Information Processing in Medical Imaging (1999)

    Google Scholar 

  32. Wang, Y., Staib, L.: Boundary finding with correspondence using statistical shape models. In: CVPR 1998 (1998)

    Google Scholar 

  33. Szekely, G., Kelemen, A., Brechbuler, C., Gerig, G.: Segmentation of 2D and 3D objects from MRI volume data using constrained elastic deformations of flexible fourier contour and surface models. Medical Image Analysis 1(1), 19–34 (1996)

    Google Scholar 

  34. Kelemen, A., Szekely, G., Gerig, G.: Three-dimensional model-based segmentation. In: Proceedings of IEEE International Workshop on Model Based 3D Image Analysis, Bombay, India, pp. 87–96 (1998)

    Google Scholar 

  35. Caselles, V., Kimmel, R., Sapiro, G.: Geodesic active contours. IJCV 22(1), 61–79 (1997)

    Article  MATH  Google Scholar 

  36. Kichenassamy, A., Kumar, A., Olver, P., Tannenbaum, A., Yezzi, A.: Gradient flows and geometric active contour models. In: Proc. IEEE ICCV, pp. 810–815 (1995)

    Google Scholar 

  37. Zeng, X., Staib, L.H., Schultz, R.T., Duncan, J.S.: Segmentation and measurement of the cortex from 3D MR images using coupled surfaces propagation. IEEE TMI 18(10) (1999)

    Google Scholar 

  38. Han, X., Xu, C., Prince, J.L.: A topology preserving level set method for geometric deformable models. IEEE Trans. PAMI 25(6), 755–768 (2003)

    Google Scholar 

  39. Ségonne, F., Grimson, E., Fischl, B.: A Genetic algorithm for the topology correction of cortical surfaces. In: IPMI 2005 (2005)

    Google Scholar 

  40. Leventon, M., Grimson, W.E.L., Faugeras, O.: Statistical shape influence in geodesic active contours. In: CVPR 2000 (2000)

    Google Scholar 

  41. Leventon, M., Faugeras, O., Grimson, W.E.L., Wells, W.M.: Level set based segmentation with intensity and curvature priors. In: MMBIA 2000 (2000)

    Google Scholar 

  42. Tsai, A., Yezzi, A., Willsky, A.S.: A curve evolution approach to smoothing and segmentation using the Mumford-Shah functional. In: CVPR 2000, pp. 1119–1124 (2000)

    Google Scholar 

  43. Tsai, A., Wells, W., Tempany, C., Grimson, E., Willsky, A.: Coupled Multi-shape model and mutual information for medical image segmentation. In: Taylor, C.J., Noble, J.A. (eds.) IPMI 2003. LNCS, vol. 2732, pp. 185–197. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  44. Yang, J., Staib, L.H., Duncan, J.S.: Neighbor-constrained segmentation with 3d deformable models. In: Taylor, C.J., Noble, J.A. (eds.) IPMI 2003. LNCS, vol. 2732, pp. 198–209. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  45. Pohl, K.M., Warfield, S.K., Kikinis, R., Grimson, W.E.L., Wells, W.M.: Coupling statistical segmentation and PCA shape modeling. In: Barillot, C., Haynor, D.R., Hellier, P. (eds.) MICCAI 2004. LNCS, vol. 3216, pp. 151–159. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Grimson, E., Golland, P. (2005). Analyzing Anatomical Structures: Leveraging Multiple Sources of Knowledge. In: Liu, Y., Jiang, T., Zhang, C. (eds) Computer Vision for Biomedical Image Applications. CVBIA 2005. Lecture Notes in Computer Science, vol 3765. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11569541_2

Download citation

  • DOI: https://doi.org/10.1007/11569541_2

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-29411-5

  • Online ISBN: 978-3-540-32125-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics