Lens Distortion Calibration Using Level Sets

  • Moumen T. El-Melegy
  • Nagi H. Al-Ashwal
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3752)


This paper addresses the problem of calibrating camera lens distortion, which can be significant in medium to wide-angle lenses. Our approach is based on the analysis of distorted images of straight lines. We use a PDE-based level set method to find the lens distortion parameters that straighten these lines. One advantage of this method is that it integrates the extraction of image distorted lines and the computation of distortion parameters within one energy functional which is minimized during level set evolution. Some experiments to evaluate the performance of this approach are reported.


Distorted Image Initial Contour Lens Distortion Distortion Parameter Distortion Model 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Chan, T., Vese, L.: Active contours without edges. IEEE Trans. Image Processing 10(2), 266–277 (2001)zbMATHCrossRefGoogle Scholar
  2. 2.
    Osher, S., Fedkiw, R.: Level Set Methods and Dynamic Implicit Surfaces. Springer, Heidelberg (2003)zbMATHGoogle Scholar
  3. 3.
    Osher, S., Paragios, N.: Geometric Level Set Methods in Imaging, Vision and Graphics. Springer, Heidelberg (2003)zbMATHGoogle Scholar
  4. 4.
    Sethian, J.: Level Set Methods and Fast Marching Methods: Evolving Interfaces in Computational Geometry, Fluid Mechanisms, Computer Vision, and Material Sciences. Cambridge University Press, Cambridge (1999)Google Scholar
  5. 5.
    Weng, J., Cohen, P., Herniou, M.: Camera calibration with distortion models and accuracy evaluation. PAMI 14(10) (October 1992)Google Scholar
  6. 6.
    Tsai, R.: A versatile camera calibration technique for high-accuracy 3d machine vision metrology using off the shelf tv cameras and lenses. IEEE Journal of Robotics and Automation, vol. RA 3(4), 1165–1172 (1987)Google Scholar
  7. 7.
    Devernay, F., Faugeras, O.: Straight Lines Have to Be Straight: Automatic Calibration and Removal of Distortion from Scenes of Structured Environments. Machine Vision and Applications 1, 14–24 (2001)CrossRefGoogle Scholar
  8. 8.
    Becker, S., Bove, V.: Semiautomatic 3-D model extraction from uncalibrated 2-D camera views. In: Proc. SPIE Visual Data Exploration and Analysis II, February 1995, vol. 2410, pp. 447–461 (1995)Google Scholar
  9. 9.
    Kang, S., Szeliski, R.: 3-D scene data recovery using omnidirectional multibaseline stereo. In: Proc. IEEE Computer Society Conference on Computer Vision and Pattern Recognition, June 1996, pp. 364–370 (1996)Google Scholar
  10. 10.
    Taylor, C., Debevec, P., Malik, J.: Reconstructing polyhedral models of architectural scenes from photographs. In: Fourth European Conference on Computer Vision (ECCV 1996), Cambridge, England, April 1996, vol. 2, pp. 659–668. Springer, Heidelberg (1996)Google Scholar
  11. 11.
    McMillan, L., Bishop, G.: Plenoptic modeling: An image-based rendering system. Computer Graphics (SIGGRAPH 1995), 39–46 (August 1995)Google Scholar
  12. 12.
    Szeliski, R.: Image Mosaicing for Tele-Reality Applications. In: IEEE Workshop on Applications of Computer Vision (WACV 1994), Sarasota, Florida, December 1994, pp. 44–53. IEEE Computer Society, Los Alamitos (1994)CrossRefGoogle Scholar
  13. 13.
    Szeliski, R., Kang, S.: Direct methods for visual scene reconstruction. In: IEEE Workshop on Representations of Visual Scenes, Cambridge, Massachusetts, June 1995, pp. 26–33 (1995)Google Scholar
  14. 14.
    Kang, S.: Radial distortion snakes. In: IAPR Workshop on Machine Vision Applications (MVA 2000), Tokyo, Japan, November 2000, pp. 603–606 (2000)Google Scholar
  15. 15.
    Chan, T., Sandberg, B., Vese, L.: Active Contours without Edges for Vector-Valued Images. Journal Visual Communication and Image Rep. 11, 130–141 (2000)CrossRefGoogle Scholar
  16. 16.
    Chan, T., Vese, L.: A level set algorithm for minimizing the Mumford–Shah functional in image processing. In: IEEE Workshop on Variational and Level Set Methods, Vancouver, CA, pp. 161–168 (2001)Google Scholar
  17. 17.
    Vese, L., Chan, T.: A Multiphase levelset Framework for Image Segmentation using the Mumford and Shah Model. International Journal of Computer Vision 50(3), 271–293 (2002)zbMATHCrossRefGoogle Scholar
  18. 18.
    Brown, D.: Close-range camera calibration. Phtogrammetric Engineering 37(8), 855–866 (1971)Google Scholar
  19. 19.
    Prescott, B., McLean, G.: Line-based correction of radial lens distortion. Graphical Models and Image Processing 59(1), 39–47 (1997)CrossRefGoogle Scholar
  20. 20.
    Swaminathan, R., Nayar, S.: Non-metric calibration of wide-angle lenses and polycameras. IEEE Trans. Pattern Analysis and Machine Intelligence (PAMI) 22(10) (October 2000)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  • Moumen T. El-Melegy
    • 1
  • Nagi H. Al-Ashwal
    • 1
  1. 1.Electrical Engineering DepartmentAssiut UniversityAssiutEgypt

Personalised recommendations