Advertisement

Regularization of Mappings Between Implicit Manifolds of Arbitrary Dimension and Codimension

  • David Shafrir
  • Nir A. Sochen
  • Rachid Deriche
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3752)

Abstract

We study in this paper the problem of regularization of mappings between manifolds of arbitrary dimension and codimension using variational methods. This is of interest in various applications such as diffusion tensor imaging and EEG processing on the cortex. We consider the cases where the source and target manifold are represented implicitly, using multiple level set functions, or explicitly, as functions of the spatial coordinates. We derive the general implicit differential operators, and show how they can be used to generalize previous results concerning the Beltrami flow and other similar flows.

As examples, We show how these results can be used to regularize gray level and color images on manifolds, and to regularize tangent vector fields and direction fields on manifolds.

Keywords

Intersection Manifold Target Manifold Implicit Constraint Graph Manifold Beltrami Flow 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Sapiro, G.: Geometric Partial Differential Equations and Image Analysis, January 2001. Cambridge University Press, Cambridge (2001)zbMATHCrossRefGoogle Scholar
  2. 2.
    Rudin, L., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. Physica D 60, 259–268 (1992)zbMATHCrossRefGoogle Scholar
  3. 3.
    Deriche, R., Faugeras, O.: Les edp en traitement des images et vision par ordinateur. Traitement du Signal 13 (1996)Google Scholar
  4. 4.
    Tschumperlé, D.: PDE’s Based Regularization of Multivalued Images and Applications. PhD thesis, Universite de Nice-Sophia Antipolis (2002)Google Scholar
  5. 5.
    Sochen, N., Kimmel, R., Malladi, R.: A general framework for low level vision. IEEE Trans. on Image Processing 7, 310–318 (1998)zbMATHCrossRefMathSciNetGoogle Scholar
  6. 6.
    Kimmel, R., Malladi, R., Sochen, N.: Images as embedded maps and minimal surfaces: Movies, color, texture, and volumetric medical images. Int. J. Comput. Vision 39, 111–129 (2000)zbMATHCrossRefGoogle Scholar
  7. 7.
    Kimmel, R., Sochen, N.A.: Using beltrami framework for orientation diffusion in image processing. In: IWVF-4: Proceedings of the 4th International Workshop on Visual Form, pp. 346–355. Springer, Heidelberg (2001)Google Scholar
  8. 8.
    Osher, S., Paragios, N.: Geometric Level Set Methods in Imaging,Vision,and Graphics. Springer, New York (2003)zbMATHGoogle Scholar
  9. 9.
    Osher, S., Fedkiw, R.P.: Level set methods: an overview and some recent results. J. Comput. Phys. 169, 463–502 (2001)zbMATHCrossRefMathSciNetGoogle Scholar
  10. 10.
    Bertalmio, M., Sapiro, G., Cheng, L.T., Osher, S.: Variational problems and pde’s on implicit surfaces. In: VLSM 2001: Proceedings of the IEEE Workshop on Variational and Level Set Methods (VLSM 2001), vol. 186. IEEE Computer Society, Los Alamitos (2001)Google Scholar
  11. 11.
    Chan, T., Shen, J.: Variational restoration of nonflat image features: models and algorithms. SIAMJ Appl. Math. 61, 1338–1361 (2000)zbMATHMathSciNetGoogle Scholar
  12. 12.
    Tang, B., Sapiro, G., Caselles, V.: Diffusion of general data on non-flat manifolds via harmonic maps theory: The direction diffusion case. Int. J. Comput. Vision 36, 149–161 (2000)CrossRefGoogle Scholar
  13. 13.
    Brezis, H., Coron, J.M., Lieb, E.H.: Harmonic maps with defects. Commun. Math. Phys. 107, 649–705 (1986)zbMATHCrossRefMathSciNetGoogle Scholar
  14. 14.
    Memoli, F., Sapiro, G., Osher, S.: Solving variational problems and partial differential equations mapping into general target manifolds. J. Comput. Phys. 195, 263–292 (2004)zbMATHCrossRefMathSciNetGoogle Scholar
  15. 15.
    Sochen, N., Zeevi, Y.Y.: Representation of colored images by manifolds embedded in higher dimensional non-euclidean space. In: ICIP 1998: Proceedings of the International Conference on Image Processing (1998)Google Scholar
  16. 16.
    Kimmel, R., Sochen, N.A.: Orientation diffusion or how to comb a porcupine? Journal of Visual Communication and Image Representation 13, 238–248 (2001)CrossRefGoogle Scholar
  17. 17.
    Sochen, N., Deriche, R., Perez, L.L.: The beltrami flow over implicit manifolds. In: ICCV 2003: Proceedings of the Ninth IEEE International Conference on Computer Vision, vol. 832. IEEE Computer Society, Los Alamitos (2003)Google Scholar
  18. 18.
    Dascal, L., Sochen, N.: On the maximum principle of the color beltrami flow. SIAM Journal on Applied Mathematics 65, 1615–1632 (2005)zbMATHCrossRefMathSciNetGoogle Scholar
  19. 19.
    Dascal, L., Kamin, S., Sochen, N.: Variational inequality for discontinuous solutions of degenerated parabolic equations. Technical Report School of Mathematical Sciences, Tel-Aviv University (2005)Google Scholar
  20. 20.
    Rosen: Two-phase algorithm for non linear constraint problems. Non Linear Programming 3, 97–124 (1978)Google Scholar
  21. 21.
    Chefd’hotel, C., Tschumperlé, D., Deriche, R., Faugeras, O.: Regularizing flows for constrained matrix-valued images. J. Math. Imaging Vis. 20, 147–162 (2004)CrossRefGoogle Scholar
  22. 22.
    Min, C.: Local level set method in high dimension and codimension. J. Comput. Phys. 200, 368–382 (2004)zbMATHCrossRefMathSciNetGoogle Scholar
  23. 23.
    Peng, D., Merriman, B., Osher, S., Zhao, H., Kang, M.: A pde-based fast local level set method. J. Comput. Phys. 155, 410–438 (1999)zbMATHCrossRefMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  • David Shafrir
    • 1
  • Nir A. Sochen
    • 1
  • Rachid Deriche
    • 2
  1. 1.University of Tel-AvivRamat-Aviv, Tel-AvivIsrael
  2. 2.Odysee project, INRIA Sophia-AntipolisSophia-AntipolisFrance

Personalised recommendations