Skip to main content

A Gradient Descent Procedure for Variational Dynamic Surface Problems with Constraints

  • Conference paper

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 3752))

Abstract

Many problems in image analysis and computer vision involving boundaries and regions can be cast in a variational formulation. This means that m-surfaces, e.g. curves and surfaces, are determined as minimizers of functionals using e.g. the variational level set method. In this paper we consider such variational problems with constraints given by functionals. We use the geometric interpretation of gradients for functionals to construct gradient descent evolutions for these constrained problems. The result is a generalization of the standard gradient projection method to an infinite-dimensional level set framework. The method is illustrated with examples and the results are valid for surfaces of any dimension.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Solem, J.E., Overgaard, N.: A geometric formulation of gradient descent for variational problems with moving surfaces. In: The 5th International Conference on Scale Space and PDE methods in Computer Vision, Scale Space 2005, pp. 419–430. Springer, Hofgeismar (2005)

    Chapter  Google Scholar 

  2. Damgaard Pedersen, U., Fogh Olsen, O., Holm Olsen, N.: A multiphase variational level set approach for modelling human embryos. In: IEEE Proc. Workshop on Variational, Geometric and Level Set Methods in Computer Vision, pp. 25–32 (2003)

    Google Scholar 

  3. Zhao, H., Chan, T., Merriman, B., Osher, S.: A variational level set approach to multiphase motion. J. Computational Physics 127, 179–195 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  4. Solem, J.E., Kahl, F., Heyden, A.: Visibility constrained surface evolution. In: International Conference on Computer Vision and Pattern Recognition, San Diego, CA (2005)

    Google Scholar 

  5. Rosen, J.: The gradient projection method for nonlinear programming: Part II, nonlinear constraints. J. Society for Industrial and Applied Mathematics 9, 514–532 (1961)

    Article  Google Scholar 

  6. Thorpe, J.A.: Elementary Topics in Differential Geometry. Springer, Heidelberg (1985)

    Google Scholar 

  7. Dervieux, A., Thomasset, F.: A finite element method for the simulation of Rayleigh–Taylor instability. In: Rautman, R. (ed.) Approximation Methods for Navier–Stokes Problems. Lecture Notes in Mathematics, vol. 771, pp. 145–158. Springer, Heidelberg (1979)

    Chapter  Google Scholar 

  8. Osher, S., Sethian, J.A.: Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79, 12–49 (1988)

    Article  MATH  MathSciNet  Google Scholar 

  9. Caselles, V., Kimmel, R., Sapiro, G.: Geodesic active contours. Int. Journal of Computer Vision (1997)

    Google Scholar 

  10. Caselles, V., Kimmel, R., Sapiro, G., Sbert, C.: Minimal surfaces based object segmentation. IEEE Transactions on Pattern Analysis and Machine Intelligence 19, 394–398 (1997)

    Article  Google Scholar 

  11. Paragios, N., Deriche, R.: Geodesic active regions: A new paradigm to deal with frame partition problems in computer vision. International Journal of Visual Communication and Image Representation (2000)

    Google Scholar 

  12. do Carmo, M.: Differential Geometry of Curves and Surfaces. Prentice-Hall, Englewood Cliffs (1976)

    MATH  Google Scholar 

  13. Hartley, R.I., Zisserman, A.: Multiple View Geometry in Computer Vision. Cambridge University Press, Cambridge (2000)

    MATH  Google Scholar 

  14. Zhao, H., Osher, S., Merriman, B., Kang, M.: Implicit and non-parametric shape reconstruction from unorganized points using a variational level set method. Computer Vision and Image Understanding, 295–319 (2000)

    Google Scholar 

  15. Osher, S.J., Fedkiw, R.P.: Level Set Methods and Dynamic Implicit Surfaces. Springer, Heidelberg (2002)

    Google Scholar 

  16. Lorensen, W., Cline, H.: Marching cubes: a high resolution 3d surface reconstruction algorithm. Computer Graphics (Siggraph 1987 ) 21, 163–169 (1987)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Solem, J.E., Overgaard, N.C. (2005). A Gradient Descent Procedure for Variational Dynamic Surface Problems with Constraints. In: Paragios, N., Faugeras, O., Chan, T., Schnörr, C. (eds) Variational, Geometric, and Level Set Methods in Computer Vision. VLSM 2005. Lecture Notes in Computer Science, vol 3752. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11567646_28

Download citation

  • DOI: https://doi.org/10.1007/11567646_28

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-29348-4

  • Online ISBN: 978-3-540-32109-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics