A C1 Globally Interpolatory Spline of Arbitrary Topology

  • Ying He
  • Miao Jin
  • Xianfeng Gu
  • Hong Qin
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3752)


Converting point samples and/or triangular meshes to a more compact spline representation for arbitrarily topology is both desirable and necessary for computer vision and computer graphics. This paper presents a C 1 manifold interpolatory spline that can exactly pass through all the vertices and interpolate their normals for data input of complicated topological type. Starting from the Powell-Sabin spline as a building block, we integrate the concepts of global parametrization, affine atlas, and splines defined over local, open domains to arrive at an elegant, easy-to-use spline solution for complicated datasets. The proposed global spline scheme enables the rapid surface reconstruction and facilitates the shape editing and analysis functionality.


Conformal Structure Geometric Design Planar Domain Spline Surface Arbitrary Topology 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Powell, M.J.D., Sabin, M.A.: Piecewise quadratic approximations on triangles. ACM Trans. Math. Softw. 3, 316–325 (1977)zbMATHCrossRefMathSciNetGoogle Scholar
  2. 2.
    Shi, X., Wang, S., Wang, W., R.H., W.: The C1 quadratic spline space on triangulations. Technical Report Report 86004, Department of Mathematics, Jilin University (1996)Google Scholar
  3. 3.
    Dierckx, P.: On calculating normalized powell-sabin b-splines. Computer Aided Geometric Design 15, 61–78 (1997)zbMATHCrossRefMathSciNetGoogle Scholar
  4. 4.
    Dierckx, P., Van Leemput, S., Vermeire, T.: Algorithms for surface fitting using Powell-Sabin splines. IMA Journal of Numerical Analysis 12, 271–299 (1992)zbMATHCrossRefMathSciNetGoogle Scholar
  5. 5.
    Willemans, K., Dierckx, P.: Smoothing scattered data with a monotone Powell-Sabin spline surface. Numerical Algorithms 12, 215–232 (1996)zbMATHCrossRefMathSciNetGoogle Scholar
  6. 6.
    Manni, C., Sablonniere, P.: Quadratic spline quasi-interpolants on powell-sabin partitions (2004) (submitted)Google Scholar
  7. 7.
    Windmolders, J., Dierckx, P.: Subdivision of uniform Powell-Sabin splines. Computer Aided Geometric Design 16, 301–315 (1999)zbMATHCrossRefMathSciNetGoogle Scholar
  8. 8.
    Vanraes, E., Windmolders, J., Bultheel, A., Dierckx, P.: Automatic construction of control triangles for subdivided Powell-Sabin splines. Computer Aided Geometric Design 21, 671–682 (2004)zbMATHCrossRefMathSciNetGoogle Scholar
  9. 9.
    Dyn, N., Levine, D., Gregory, J.A.: A butterfly subdivision scheme for surface interpolation with tension control. ACM Trans. Graph. 9, 160–169 (1990)zbMATHCrossRefGoogle Scholar
  10. 10.
    Zorin, D., Schröder, P., Sweldens, W.: Interpolating subdivision for meshes with arbitrary topology. In: Proceedings of SIGGRAPH 1996, pp. 189–192 (1996)Google Scholar
  11. 11.
    Nürnberger, G., Zeilfelder, F.: Developments in bivariate spline interpolation. J. Comput. Appl. Math. 121, 125–152 (2000); Numerical analysis in the 20th century, Vol. I, Approximation theoryzbMATHCrossRefMathSciNetGoogle Scholar
  12. 12.
    Hahmann, S., Bonneau, G.P.: Triangular G 1 interpolation by 4-splitting domain triangles. Computer Aided Geometric Design 17, 731–757 (2000)zbMATHCrossRefMathSciNetGoogle Scholar
  13. 13.
    Hahmann, S., Bonneau, G.P.: Polynomial surfaces interpolating arbitrary triangulations. IEEE Trans. Vis. Comput. Graph 9, 99–109 (2003)CrossRefGoogle Scholar
  14. 14.
    Nürnberger, G., Zeilfelder, F.: Lagrange interpolation by bivariate C 1-splines with optimal approximation order. Adv. Comput. Math. 21, 381–419 (2004)zbMATHCrossRefMathSciNetGoogle Scholar
  15. 15.
    Grimm, C.M., Hughes, J.F.: Modeling surfaces of arbitrary topology using manifolds. In: Proceedings of SIGGRAPH 1995, pp. 359–368 (1995)Google Scholar
  16. 16.
    Cotrina, J., Pla, N.: Modeling surfaces from meshes of arbitrary topology. Computer Aided Geometric Design 17, 643–671 (2000)zbMATHCrossRefMathSciNetGoogle Scholar
  17. 17.
    Cotrina, J., Pla, N., Vigo, M.: A generic approach to free form surface generation. In: Proceedings of ACM symposium on Solid modeling and applications, pp. 35–44 (2002)Google Scholar
  18. 18.
    Ying, L., Zorin, D.: A simple manifold-based construction of surfaces of arbitrary smoothness. ACM Trans. Graph. 23, 271–275 (2004)CrossRefGoogle Scholar
  19. 19.
    Gu, X., He, Y., Qin, H.: Manifold splines. In: Proceedings of ACM Symposium on Solid and Physical Modeling, pp. 27–38 (2005)Google Scholar
  20. 20.
    Dahmen, W., Micchelli, C.A., Seidel, H.P.: Blossoming begets B-spline bases built better by B-patches. Mathematics of Computation 59, 97–115 (1992)zbMATHCrossRefMathSciNetGoogle Scholar
  21. 21.
    Vanraes, E., Dierckx, P., Bultheel, A.: On the choice of the PS-triangles. Report TW 353, Department of Computer Science, K.U.Leuven (2003)Google Scholar
  22. 22.
    Gu, X., Yau, S.T.: Global conformal surface parameterization. In: Proceedings of the Eurographics/ACM SIGGRAPH symposium on Geometry processing, pp. 127–137 (2003)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  • Ying He
    • 1
  • Miao Jin
    • 1
  • Xianfeng Gu
    • 1
  • Hong Qin
    • 1
  1. 1.Center for Visual Computing (CVC) and Department of Computer ScienceStony Brook UniversityStony BrookUSA

Personalised recommendations