Geodesic Image Interpolation: Parameterizing and Interpolating Spatiotemporal Images

  • Brian B. Avants
  • C. L. Epstein
  • J. C. Gee
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3752)


We develop a practical, symmetric, data-driven formulation, geodesic image interpolation (GII), for interpolating images with respect to geometric and photometric variables. GII captures, in implementation, the desirable properties of symmetry that comes from the theory of diffeomorphisms and Grenander’s computational anatomy (CA). Geodesic diffeomorphisms are a desirable transformation model as they provide a symmetric deforming path connecting images or a series of images. Once estimated, this geodesic may be used to (re)parameterize and interpolate image sets in approximation of continuous, deforming dynamic processes. One may then closely recover the original continuous signal from a few samples. The method, based on our work in symmetric diffeomorphic image registration, generalizes the concept of point set reparameterization to the case where point sets are replaced by image sets. This problem differs from point reparameterization in that a variational image correspondence problem must be solved before resampling. Our image reparameterization method is applied to solve similar problems to point reparameterization: dense interpolation, matching and simulation of dynamic processes are illustrated.


Interpolation Method Image Registration Geodesic Path Deformable Image Registration Computational Anatomy 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Beier, T., Neely, S.: Feature-based image metamorphosis. In: SIGGRAPH 1992: Proceedings of the 19th annual conference on Computer graphics and interactive techniques, pp. 35–42. ACM Press, New York (1992)CrossRefGoogle Scholar
  2. 2.
    Special issue on morphing. The Visual Computer 14(8/9), 359 (1998)Google Scholar
  3. 3.
    Witkin, A., Popović, Z.: “Motion warping,”. In: Computer Graphics. Annual Conference Series, vol. 29, pp. 105–108 (1995)Google Scholar
  4. 4.
    Tanco, L., Hilton, A.: Realistic synthesis of novel human movements from a database of motion capture examples (2000)Google Scholar
  5. 5.
    Herman, G.T., Zheng, J., Bucholtz, C.A.: Shape-based interpolation. IEEE Comput. Graph. Appl. 12, 69–79 (1992)CrossRefGoogle Scholar
  6. 6.
    Dinh, H.Q., Yezzi, A., Turk, G.: Texture transfer during shape transformation. ACM Trans. Graph. 24(2), 289–310 (2005)CrossRefGoogle Scholar
  7. 7.
    Lee, T.-Y., Lin, C.-H.: Feature-guided shape-based image interpolation. IEEE Trans. Med. Imag. 21, 1479–1489 (2002)CrossRefGoogle Scholar
  8. 8.
    Raya, S.P., Udupa, J.K.: Shape-based interpolation of multidimensional objects. IEEE Trans. Med. Imag. 9, 34–42 (1990)Google Scholar
  9. 9.
    Penney, G.P., Schnabel, J.A., Rueckert, D., Viergever, M.A., Niessen, W.J.: Registration-based interpolation. IEEE Transactions on Medical Imaging 23(7), 922–926 (2004)CrossRefGoogle Scholar
  10. 10.
    Dawant, B., Li, R., Cetinkaya, E., Kao, C., Fitzpatrick, J., Konrad, P.: Computerized atlas-guided positioning of deep brain simulators: A feasibility study. In: Gee, J., Maintz, J.B. (eds.) Workshop on Biomedical Image Registration, Philadelphia, July 2003, pp. 142–150 (2003)Google Scholar
  11. 11.
    Ballmaier, M., O’Brien, J.T., Burton, E.J., Thompson, P.M., Rex, D.E., Narr, K.L., McKeith, I.G., DeLuca, H., Toga, A.W.: Comparing gray matter loss profiles between dementia with lewy bodies and alzheimer’s disease using cortical pattern matching: diagnosis and gender effects. NeuroImage 23, 325–335 (2004)CrossRefGoogle Scholar
  12. 12.
    Grossman, M., Farmer, J., Leight, S., Work, M., Gee, J.C.: Cerebrospinal fluid profile distinguishes frontotemporal dementia from Alzheimer’s disease. Brain (2005) (in press)Google Scholar
  13. 13.
    Eckmann, B.: Social choice and topology. lecture notes (2003)Google Scholar
  14. 14.
    Weinberger, S.: On the topological social choice model. J. Econom. Theory 115(2), 377–384 (2004)zbMATHCrossRefMathSciNetGoogle Scholar
  15. 15.
    Christensen, G., Johnson, H.: Consistent image registration. IEEE Transactions on Medical Imaging 20(7), 568–582 (2001)CrossRefGoogle Scholar
  16. 16.
    Thirion, J.: Image matching as a diffusion process: an analogy with maxwell’s demons. Medical Image Analysis 2(3), 243–260 (1998)CrossRefGoogle Scholar
  17. 17.
    Trouve, A.: Diffeomorphism groups and pattern matching in image analysis. Intl. J. Comp. Vis. 28(3), 213–221 (1998)CrossRefMathSciNetGoogle Scholar
  18. 18.
    Dupuis, P., Grenander, U., Miller, M.I.: Variational problems on flows of diffeomorphisms for image matching. Quarterly of Applied Mathematics 56(3), 587–600 (1998)zbMATHMathSciNetGoogle Scholar
  19. 19.
    Miller, M.I., Younes, L.: Group actions, homeomorphisms and matching: a general framework. Int. J. Computer Vision 41, 61–84 (2001)zbMATHCrossRefGoogle Scholar
  20. 20.
    Miller, M., Trouve, A., Younes, L.: On the metrics and Euler-Lagrange equations of computational anatomy. Annu. Rev. Biomed. Eng. 4, 375–405 (2002)CrossRefGoogle Scholar
  21. 21.
    Beg, F., Miller, M., Trouve, A., Younes, L.: Computing large deformation metric mappings via geodesic flows of diffeomorphisms. Int. J. Comp. Vision 61, 139–157 (2005)CrossRefGoogle Scholar
  22. 22.
    Hermosillo, G., Chefd’Hotel, C., Faugeras, O.: A variational approach to multi-modal image matching. Intl. J. Comp. Vis. 50(3), 329–343 (2002)zbMATHCrossRefGoogle Scholar
  23. 23.
    Arnold, V.I.: Ordinary Differential Equations. Springer, Berlin (1991)Google Scholar
  24. 24.
    Marsden, J., Ratiu, T.: Introduction to Mechanics and Symmetry. Springer, New York (1999)zbMATHGoogle Scholar
  25. 25.
    Schmid, R.: Infinite dimensional Lie groups with applications in mathematical physics. Journal of Geometry and Symmetry in Physics 1, 1–67 (2004)Google Scholar
  26. 26.
    Avants, B., Schoenemann, P.T., Gee, J.C.: Landmark and intensity-driven lagrangian frame diffeomorphic image registration: Application to structurally and functionally based inter-species comparison. In: Gee, J.C., Maintz, J.B.A., Vannier, M.W. (eds.) WBIR 2003. LNCS, vol. 2717. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  27. 27.
    Avants, et al.: Non-rigid registration. In: Yoo, T. (ed.) Insight Into Images: Theory for Segmentation, Registration and Image Analysis, A. K. Peters Ltd, Natick (2004)Google Scholar
  28. 28.
    Rivest, R., Cormen, T., Leiserson, C.: Introduction to Algorithms. MIT Press, Cambridge (1992)Google Scholar
  29. 29.
    Johnson, H.J., Christensen, G.E.: Consistent landmark and intensity-based image registration. IEEE Trans. Med. Imaging 21(5), 450–461 (2002)CrossRefGoogle Scholar
  30. 30.
    Sundaram, T., Avants, B., Gee, J.C.: A dynamic model of average lung deformation using area-based reparameterization and shape averaging of lung MR images. In: Barillot, C., Haynor, D.R., Hellier, P. (eds.) MICCAI 2004. LNCS, vol. 3217, pp. 1000–1007. Springer, Heidelberg (2004)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  • Brian B. Avants
    • 1
  • C. L. Epstein
    • 1
  • J. C. Gee
    • 1
  1. 1.Depts. of Radiology and MathematicsUniversity of PennsylvaniaPhiladelphiaUSA

Personalised recommendations