Advertisement

Uncertainty-Driven Non-parametric Knowledge-Based Segmentation: The Corpus Callosum Case

  • Maxime Taron
  • Nikos Paragios
  • Marie-Pierre Jolly
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3752)

Abstract

In this paper we propose a novel variational technique for the knowledge based segmentation of two dimensional objects. One of the elements of our approach is the use of higher order implicit polynomials to represent shapes. The most important contribution is the estimation of uncertainties on the registered shapes, which can be used with a variable bandwidth kernel-based non-parametric density estimation process to model prior knowledge about the object of interest. Such a non-linear model with uncertainty measures is integrated with an adaptive visual-driven data term that aims to separate the object of interest from the background. Promising results obtained for the segmentation of the corpus callosum in MR mid-sagittal brain slices demonstrate the potential of such a framework.

Keywords

Corpus Callosum Active Shape Model Local Registration Variable Bandwidth Free Form Deformation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bosch, J.G., Mitchell, S.C., Lelieveldt, B.P.F., Nikland, F., Kamp, O., Sonka, M., Reiber, J.H.: Automatic segmentation of echocardiographic sequences by active appearance motion models. IEEE Trans. Medical Imaging 21(11), 1374–1383 (2002)CrossRefGoogle Scholar
  2. 2.
    Cootes, T.F., Hill, A., Taylor, C.J., Haslam, J.: The use of active shape models for locating structures in medical images. Image and Vision Computing 12(6), 255–266 (1994)CrossRefGoogle Scholar
  3. 3.
    Cootes, T.F., Taylor, C.J.: Statistical models of appearance for computer vision. Technical Report, University of Manchester (2004)Google Scholar
  4. 4.
    Duncan, J., Wang, A., Amini, A., Greene, R., Kier, L., Gore, J., Holahan, J., Shaywitz, S., Fletcher, J., Bronen, R., Shaywitz, B.: A MRI-based study of the corpus callosum in dyslexic and normal children. Neurology (1996)Google Scholar
  5. 5.
    Duta, N., Sonka, M.: Segmentation and interpretation of MR brain images: An improved active shape model. IEEE Trans. Medical Imaging 17(6), 1049–1062 (1998)CrossRefGoogle Scholar
  6. 6.
    Frumin, M., Golland, P., Kikinis, R., Hirayasu, Y., Salisbury, D.F., Hennen, J., Dickey, C.C., Anderson, M., Jolesz, F.A., Grimson, W.E.L., McCarley, R.W., Shenton, M.R.: Shape differences in the corpus callosum in first-episode schizophrenia and first-episode psychotic affective disorder. American Journal of Psychiatry 159, 866–868 (2002)CrossRefGoogle Scholar
  7. 7.
    Huang, X., Paragios, N., Metaxas, D.: Registration of Structures in Arbitrary Dimensions: Implicit Representations, Mutual Information & Free-Form Deformations. Technical Report DCS-TR-0520, Division of Computer & Information Science, Rutgers University (2003)Google Scholar
  8. 8.
    Kanatani, K.: Uncertainty modeling and model selection for geometric inference. IEEE Trans. Pattern Anal. Mach. Intell. 26(10), 1307–1319 (2004)CrossRefGoogle Scholar
  9. 9.
    Leventon, M., Grimson, E., Faugeras, O.: Statistical Shape Influence in Geodesic Active Controus. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. I-316–322 (2000)Google Scholar
  10. 10.
    Lundervold, A., Duta, N., Taxt, T., Jain, A.: Model-guided segmentation of corpus callosum in MR images. In: CVPR, pp. 1231–1238 (1999)Google Scholar
  11. 11.
    McInerney, T., Hamarneh, G., Shenton, M., Terzopoulos, D.: Deformable organisms for automatic medical image analysis. Medical Image Analysis 6, 251–266 (2002)CrossRefGoogle Scholar
  12. 12.
    Mittal, A., Paragios, N.: Motion-based background substraction using adaptive kernel density estimation. Computer Vision and Pattern Recognition 2, 302–309 (2004)Google Scholar
  13. 13.
    Mumford, D., Shah, J.: Boundary detection by minimizing functionals. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 22–26 (1985)Google Scholar
  14. 14.
    Osher, S., Sethian, J.: Fronts propagating with curvature-dependent speed: Algorithms based on the Hamilton-Jacobi formulation. Journal of Computational Physics 79, 12–49 (1988)zbMATHCrossRefMathSciNetGoogle Scholar
  15. 15.
    Paragios, N., Rousson, M., Ramesh, V.: Matching Distance Functions: A Shape-to-Area Variational Approach for Global-to-Local Registration. In: European Conference on Computer Vision, pp. II-775–790 (2002)Google Scholar
  16. 16.
    Rueckert, D., Sonoda, L.I., Hayes, C., Hill, D., Leach, M., Hawkes, D.: Nonrigid registration using free-form deformations: Application to breast MR images. IEEE Transactions on Medical Imaging 18, 712–721 (1999)CrossRefGoogle Scholar
  17. 17.
    Sederberg, T., Parry, S.: Free-form deformation of solid geometric models. In: Proceedings SIGGRAPH 1986, vol. 20, pp. 151–160 (1986)Google Scholar
  18. 18.
    Stewart, C., Tsai, C.-L., Roysam, B.: The dual bootstrap iterative closest point algorithm with application to retinal image registration. IEEE Trans. Med. Img. 22, 1379–1394 (2003)CrossRefGoogle Scholar
  19. 19.
    Wand, M., Jones, M.: Kernel Smoothing. Chapman and Hall, Boca Raton (1995)zbMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  • Maxime Taron
    • 1
  • Nikos Paragios
    • 1
  • Marie-Pierre Jolly
    • 2
  1. 1.CERTIS – Ecole Nationale des Ponts et ChausseesChamps-sur-MarneFrance
  2. 2.Imaging & Visualization DepartmentSiemens Corporate ResearchPrincetonUSA

Personalised recommendations