Skip to main content

Photoelectric Response of Bacteriorhodopsin in Thin PVA Films and Its Model

  • Conference paper
Brain, Vision, and Artificial Intelligence (BVAI 2005)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 3704))

Included in the following conference series:

Abstract

Bacteriorhodopsin is a protein in the purple membrane of the archaean Halobacterium salinarum. Its natural function is to act as a light-driven proton pump contributing to the energy balancing mechanism in the archaean. Bacteriorhodopsin retains its proton pumping property even when isolated from the purple membrane and incorporated into an artificial membrane or polymeric film. Such bacteriorhodopsin films have been studied as a potential material for information technology. We built optical elements based on bacteriorhodopsin and measured their spectral properties. Here we describe a model of photoelectric response of the elements and compare it to the experimentally measured values.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bickel-Sandkötter, S., Gärtner, W., Dane, M.: Conversion of energy in halobacteria: ATP synthesis and phototaxis. Archives of Microbiology 166, 1–11 (1996)

    Article  Google Scholar 

  2. Bräuchle, C., Hampp, N., Drabent, R.: Optical applications of bacteriorhodopsin and its mutated variants. Advanced Materials 3, 420–428 (1991)

    Article  Google Scholar 

  3. Bryl, K., Váró, G., Drabent, R.: The photocycle of bacteriorhodopsin immobilized in poly(vinyl alcohol) film. FEBS Letters 285(1), 66–70 (1991)

    Article  Google Scholar 

  4. Chen, Z., Birge, R.: Protein-based artificial retinas. Trends in Biotechnology 11, 292–300 (1993)

    Article  Google Scholar 

  5. Conrad, M.: Molecular computing. In: Yovits, M.C. (ed.) Advances in Computers, vol. 31, pp. 235–324. Academic Press, San Diego (1990)

    Google Scholar 

  6. Dartnall, H.J.A.: The interpretation of spectral sensitivity curves. British Medical Bulletin 9(24), 24–30 (1953)

    Google Scholar 

  7. Eroǧlu, I., Zubat, B.M., Yücel, A.M.: Modelling and kinetics of light induced proton pumping of bacteriorhodopsin reconstituted liposomes. Journal of Membrane Science 61, 325–336 (1991)

    Article  Google Scholar 

  8. Frydrych, M., Lensu, L., Parkkinen, J.: Model of photovoltage response of bacteriorhodopsin in PVA films. In: Technical Proceedings of the 2001 International Conference on Computational Nanoscience, ICCN, Hilton Head Island, South Carolina, U.S.A, March 19-21, pp. 17–20 (2001)

    Google Scholar 

  9. Frydrych, M., Silfsten, P., Parkkinen, S., Parkkinen, J., Jaaskelainen, T.: Color sensitive retina based on bacteriorhodopsin. Biosystems 54(3), 131–140 (2000)

    Article  Google Scholar 

  10. Hampp, N., Thoma, R., Bräuchle, C., Kreuzer, F.-H., Maurer, R., Oesterhelt, D.: Bacteriorhodopsin variants for optical information processing: a new approach in material science. In: AIP Conference Proceedings, pp. 181–190 (1992)

    Google Scholar 

  11. Hong, F.: Molecular sensors based on the photoelectric effect of bacteriorhodopsin: origin of differential responsivity. Materials Science and Engineering C: Biomimetic Materials, Sensors and Systems 5(1), 61–79 (1997)

    Google Scholar 

  12. Ikonen, M., Lemmetyinen, H., Alekseev, A., Mitsner, B.I., Savransky, V., Prokhorov, A.: A flash photolysis study of all-trans-retinal in Langmuir-Blodgett films and in liposomes. Chemical Physics Letters 164, 161–165 (1989)

    Article  Google Scholar 

  13. Lamb, T.D.: Photoreceptor spectral sensitivities: common shape in the long-wavelength region. Vision Research 35(22), 3083–3091 (1995)

    Article  Google Scholar 

  14. Lensu, L., Frydrych, M., Parkkinen, J., Parkkinen, S., Jaaskelainen, T.: Photoelectric properties of bacteriorhodopsin analogs for color-sensitive optoelectronic devices. Optical Materials 27(1), 57–62 (2004)

    Article  Google Scholar 

  15. Lensu, L., Parkkinen, J., Parkkinen, S., Frydrych, M., Jaaskelainen, T.: Photoelectrical properties of protein-based optoelectronic sensor. Optical Materials 21(4), 783–788 (2003)

    Article  Google Scholar 

  16. Lipetz, L.E., Cronin, T.W.: Application of an invariant spectral form to the visual pigments of crustaceans: implications regarding the binding of the chromophore. Vision Research 28(10), 1083–1093 (1988)

    Article  Google Scholar 

  17. MacNichol Jr., E.F.: A unifying presentation of photopigment spectra. Vision Research 26(9), 1543–1556 (1986)

    Article  Google Scholar 

  18. Oesterhelt, D., Stoeckenius, W.: Rhodopsin-like protein from the purple membrane of Halobacterium Halobium. Nature New. Biol. 233(39), 149–152 (1971)

    Google Scholar 

  19. Oesterhelt, D., Stoeckenius, W.: Isolation of the cell membrane of Halobacterium H alobium and its fractionation into red and purple membrane. Methods Enzymol., 667–686 (1974)

    Google Scholar 

  20. Oyster, C.W.: The Human Eye. Sinauer Associates, Inc., Sunderland (1999)

    Google Scholar 

  21. Rigaud, J.-L., Paternostre, M.-T., Bluzat, A.: Mechanisms of membrane protein insertion into liposomes during reconstution procedures involving the use of detergents. 2. incorporation of the light-driven proton pump bacteriorhodopsin. Biochemistry 27, 2677–2688 (1988)

    Article  Google Scholar 

  22. Silfsten, P., Parkkinen, S., Luostarinen, J., Khodonov, A., Demina, O., Jaaskelainen, T., Parkkinen, J.: Opto-electrical properties of bacteriorhodopsin and its analogs in polyvinylalcohol films. In: Yaacov, Z. (ed.) Proceedings of the 7th International Conference on Retinal Proteins, Isreal, June 23-28 (1996)

    Google Scholar 

  23. Silfsten, P., Parkkinen, S., Luostarinen, J., Khodonov, A., Jaaskelainen, T., Parkkinen, J.: Color sensitive biosensors for imaging. In: Proceedings of the 13th International Conference on Pattern Recognition, ICPR 1996, Vienna, Austria, vol. 3, pp. 331–335 (1996)

    Google Scholar 

  24. Tittor, J., Oesterhelt, D.: The quantum yield of bacteriorhodopsin. FEBS Letters 263(2), 269–273 (1990)

    Article  Google Scholar 

  25. Trissl, H.-W.: Photoelectric measurements of purple membranes. Photochemistry and Photobiology 51(6), 793–818 (1990)

    Google Scholar 

  26. Verhoeven, J.W.: Glossary of terms used in photochemistry. Pure and Applied Chemistry 68(12), 2223–2286 (1996)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Frydrych, M., Lensu, L., Parkkinen, S., Parkkinen, J., Jaaskelainen, T. (2005). Photoelectric Response of Bacteriorhodopsin in Thin PVA Films and Its Model. In: De Gregorio, M., Di Maio, V., Frucci, M., Musio, C. (eds) Brain, Vision, and Artificial Intelligence. BVAI 2005. Lecture Notes in Computer Science, vol 3704. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11565123_13

Download citation

  • DOI: https://doi.org/10.1007/11565123_13

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-29282-1

  • Online ISBN: 978-3-540-32029-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics