Skip to main content

A Neural Model of Human Object Recognition Development

  • Conference paper
Book cover Brain, Vision, and Artificial Intelligence (BVAI 2005)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 3704))

Included in the following conference series:

Abstract

The human capability of recognizing objects visually is here held to be a function emerging as result of interactions between epigenetic influences and basic neural plasticity mechanisms. The model here proposed simulates the development of the main neural processes of the visual system giving rise to the higher function of recognizing objects. It is a hierarchy of artificial neural maps, mainly based on the LISSOM architecture, achieving self-organization through simulated intercortical lateral connections.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bednar, J.A.: Learning to See: Genetic and Environmental Influences on Visual Development. PhD thesis, University of Texas at Austin, Tech. Report AI-TR-02-294 (2002)

    Google Scholar 

  2. Burkhalter, A., Bernardo, K.L., Charles, V.: Development of local circuits in human visual cortex. Journal of Neuroscience 13, 1916–1931 (1993)

    Google Scholar 

  3. Chapman, B., Stryker, M.P., Bonhoeffer, T.: Development of orientation preference maps in ferret primary visual cortex. Journal of Neuroscience 16, 6443–6453 (1996)

    Google Scholar 

  4. Dannemiller, J.L.: A test of color constancy in 9- and 20-weeks-old human infants following simulated illuminant changes. Developmental Psychology 25, 171–184 (1989)

    Article  Google Scholar 

  5. Dowling, J.E.: The Retina: An Approachable Part of the Brain. Cambridge University Press, Cambridge (1987)

    Google Scholar 

  6. Essen, D.C.V., Lewis, J.W., Drury, H.A., Hadjikhani, N., Tootell, R.B., Bakircioglu, M., Miller, M.I.: Mapping visual cortex in monkeys and humans using surface-based atlases. Vision Research 41, 1359–1378 (2001)

    Article  Google Scholar 

  7. Farah, M.J., Aguirre, G.K.: Imaging visual recognition: Pet and fmri studies of the functional anatomy of human visual recognition. Trends in Cognitive Sciences 3, 179–186 (1999)

    Article  Google Scholar 

  8. Gerhardstein, P., Kovacs, I., Ditre, J., Feher, A.: Detection of contour continuity and closure in three-month-olds. Vision Research 44, 2981–2988 (2004)

    Article  Google Scholar 

  9. Gödecke, I., Bonhoeffer, T.: Development of identical orientation maps for two eyes without common visual experience. Nature 379, 251–254 (1996)

    Article  Google Scholar 

  10. Grill-Spector, K., Kourtzi, Z., Kanwisher, N.: The lateral occipital complex and its role in object recognition. Vision Research 41, 1409–1422 (2001)

    Article  Google Scholar 

  11. Hou, C., Pettet, M.W., Sampath, V., Candy, T.R., Norcia, A.M.: Development of the spatial organization and dynamics of lateral interactions in the human visual system. Journal of Neuroscience 23, 8630–8640 (2003)

    Google Scholar 

  12. Katz, L.C., Callaway, E.M.: Development of local circuits in mammalian visual cortex. Science 255, 209–212 (1992)

    Article  Google Scholar 

  13. Kirkwood, A., Bear, M.F.: Hebbian synapses in visual cortex. Journal of Neuroscience 14, 1634–1645 (1994)

    Google Scholar 

  14. Kohonen, T.: Self-Organizing Maps. Springer, Berlin (1995)

    Google Scholar 

  15. Landisman, C.E., Ts’o, D.Y.: Color processing in macaque striate cortex: Relationships to ocular dominance, cytochrome oxidase, and orientation. Journal of Neurophysiology 87, 3126–3137 (2002)

    Google Scholar 

  16. Leushina, L.I., Nevskaya, A.A.: Development of vision and visual notions in infants. Journal of Evolutionary Biochemistry and Physiology 39, 67–76 (2003); Translated from Zhurnal Evolyutsionnoi Biokhimii i Fiziologii

    Article  Google Scholar 

  17. Malach, R., Reppas, J.B., Benson, R.R., Kwong, K.K., Jiang, H., Kennedy, W.A., Ledden, P.J., Brady, T.J., Rosen, B.R., Tootell, R.B.: Object-related activity revealed by functional magnetic resonance imaging in human occipital cortex. Proceedings of the Natural Academy of Science USA 92, 8135–8139 (1995)

    Article  Google Scholar 

  18. Miller, K.D., Keller, J.B., Stryker, M.P.: Ocular dominance column development: Analysis and simulation. Science 245, 605–615 (1989)

    Article  Google Scholar 

  19. Murase, H., Nayar, S.: Visual learning and recognition of 3-d object by appearence. International Journal of Computer Vision 14, 5–24 (1995)

    Article  Google Scholar 

  20. Quartz, S.R., Sejnowski, T.J.: The neural basis of cognitive development: a constructivist manifesto. Behavioral and Brain Science 20, 537–596 (1977)

    Google Scholar 

  21. Sengpiel, F., Kind, P.C.: The role of activity in development of the visual system. Current Biology 12, 818–826 (2002)

    Article  Google Scholar 

  22. Sirosh, J., Miikkulainen, R.: Topographic receptive fields and patterned lateral interaction in a self-organizing model of the primary visual cortex. Neural Computation 9, 577–594 (1997)

    Article  Google Scholar 

  23. Smith, L.B.: Children’s noun learning: How general learning processes make specialized learning mechanisms. In: MacWhinney, B. (ed.) The Emergence of Language, 2nd edn. Lawrence Erlbaum Associates, Mahwah (1999)

    Google Scholar 

  24. Tootell, B.H., Silverman, M.S., Hamilton, S.L., Switkes, E., De Valois, R.: Functional anatomy of the macaque striate cortex. V. spatial frequency. Journal of Neuroscience 8, 1610–1624 (1988)

    Google Scholar 

  25. Tootell, B.H., Switkes, E., Silverman, M.S., Hamilton, S.L.: Functional anatomy of the macaque striate cortex. II. retinotopic organization. Journal of Neuroscience 8, 1531–1568 (1988)

    Google Scholar 

  26. Vanduffel, W., Tootell, R.B.H., Schoups, A.A., Orban, G.A.: The organization of orientation selectivity throughout the macaque visual cortex. Cerebral Cortex 12, 647–662 (2002)

    Article  Google Scholar 

  27. von der Malsburg, C.: Self-organization of orientation sensitive cells in the striate cortex. Kibernetic 14, 85–100 (1973)

    Article  Google Scholar 

  28. von Glasersfel, E.: The construction of Knowledge: Contributions to Conceptual Semantics. Intersystems Publications, Seaside (1987)

    Google Scholar 

  29. von Uexküll, J.: Umwelt und Innenwelt der Tiere. Springer, Berlin (1921)

    Google Scholar 

  30. Zeki, S.: Colour coding in the cerebral cortex: The reaction of cells in monkey visual cortex to wavelenghts and colours. Neuroscience 9, 741–765 (1983)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Domenella, R.G., Plebe, A. (2005). A Neural Model of Human Object Recognition Development. In: De Gregorio, M., Di Maio, V., Frucci, M., Musio, C. (eds) Brain, Vision, and Artificial Intelligence. BVAI 2005. Lecture Notes in Computer Science, vol 3704. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11565123_12

Download citation

  • DOI: https://doi.org/10.1007/11565123_12

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-29282-1

  • Online ISBN: 978-3-540-32029-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics