Skip to main content

Linear Programming for Matching in Human Body Gesture Recognition

  • Conference paper
Analysis and Modelling of Faces and Gestures (AMFG 2005)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 3723))

Included in the following conference series:

Abstract

We present a novel human body gesture recognition method using a linear programming based matching scheme. Instead of attempting to segment an object from the background, we develop a novel successive convexification linear programming method to locate the target by searching for the best matching region based on a graph template. The linear programming based matching scheme generates relatively dense matching patterns and thus presents a key feature for robust object matching and human body gesture recognition. By matching distance transformations of edge maps, the proposed scheme is able to match figures with large appearance changes. We further present gesture recognition methods based on the similarity of the exemplar with the matching target. Experiments show promising results for recognizing human body gestures in cluttered environments.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Cheung, K.M.G., Baker, S., Kanade, T.: Shape-from-silhouette of articulated objects and its use for human body kinematics estimation and motion capturef. In: CVPR, pp. I, 77–84 (2003)

    Google Scholar 

  2. Felzenszwalb, P.F., Huttenlocher, D.P.: Efficient matching of pictorial structuresf. In: CVPR, pp. II, 66–73 (2000)

    Google Scholar 

  3. Ronfard, R., Schmid, C., Triggs, B.: Learning to parse pictures of people. In: Heyden, A., Sparr, G., Nielsen, M., Johansen, P. (eds.) ECCV 2002. LNCS, vol. 2353, pp. 700–714. Springer, Heidelberg (2002)

    Chapter  Google Scholar 

  4. Mori, G., Ren, X., Efros, A., Malik, J.: Recovering human body configurations: combining segmentation and recognition. In: CVPR, pp. II, 326–333 (2004)

    Google Scholar 

  5. Gavrila, D.M., Philomin, V.: Real-time object detection for smart vehicles. In: ICCV, pp. 87–93 (1999)

    Google Scholar 

  6. Carlsson, S., Sullivan, J.: Action recognition by shape matching to key frames. In: IEEE Computer Society Workshop on Models versus Exemplars in Computer Vision (2001)

    Google Scholar 

  7. Mori, G., Malik, J.: Estimating human body configurations using shape context matching. In: Heyden, A., Sparr, G., Nielsen, M., Johansen, P. (eds.) ECCV 2002. LNCS, vol. 2352, pp. 666–680. Springer, Heidelberg (2002)

    Chapter  Google Scholar 

  8. Jiang, H., Li, Z.N., Drew, M.S.: Optimizing motion estimation with linear programming and detail-preserving variational method. In: CVPR, pp. I, 738–745 (2004)

    Google Scholar 

  9. Besag, J.: On the statistical analysis of dirty pictures. J. R. Statis. Soc. Lond. B 48, 259–302 (1986)

    MATH  MathSciNet  Google Scholar 

  10. Weiss, Y., Freeman, W.T.: On the optimality of solutions of the max-product belief propagation algorithm in arbitrary graphs. IEEE Trans. on Information Theory 47(2), 723–735 (2001)

    Article  MathSciNet  Google Scholar 

  11. Boykov, Y., Veksler, O., Zabih, R.: Fast approximate energy minimization via graph cuts. PAMI 23, 1222–1239 (2001)

    Google Scholar 

  12. Chui, H., Rangarajan, A.: A new algorithm for non-rigid point matching. In: CVPR, vol. 2, pp. 44-51 (2000)

    Google Scholar 

  13. Chekuri, C., Khanna, S., Naor, J., Zosin, L.: Approximation algorithms for the metric labeling problem via a new linear programming formulation. In: Symp. on Discrete Algs., pp. 109–118 (2001)

    Google Scholar 

  14. Rosenfeld, A., Hummel, R.A., Zucker, S.W.: Scene labeling by relaxation operations. IEEE Trans. Systems, Man, and Cybernetics 6(6), 420–433 (1976)

    Article  MATH  MathSciNet  Google Scholar 

  15. Luo, B., Hancock, E.R.: Structural matching using the em algorithm and singular value decomposition. PAMI 23, 1120–1136 (2001)

    Google Scholar 

  16. Kleinberg, J., Tardos, E.: Approximation algorithms for classification problems with pairwise relationships: Metric labeling and Markov random fields. In: IEEE FOCS, pp. 14–23 (1999)

    Google Scholar 

  17. Ben-Ezra, M., Peleg, S., Werman, M.: Real-time motion analysis with linear programming. In: ICCV, pp. 703–709 (1999)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Jiang, H., Li, ZN., Drew, M.S. (2005). Linear Programming for Matching in Human Body Gesture Recognition. In: Zhao, W., Gong, S., Tang, X. (eds) Analysis and Modelling of Faces and Gestures. AMFG 2005. Lecture Notes in Computer Science, vol 3723. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11564386_30

Download citation

  • DOI: https://doi.org/10.1007/11564386_30

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-29229-6

  • Online ISBN: 978-3-540-32074-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics