Skip to main content

Non-asymptotic Calibration and Resolution

  • Conference paper

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 3734))

Abstract

We analyze a new algorithm for probability forecasting of binary labels, without making any assumptions about the way the data is generated. The algorithm is shown to be well calibrated and to have high resolution for big enough data sets and for a suitable choice of its parameter, a kernel on the Cartesian product of the forecast space [0,1] and the object space. Our results are non-asymptotic: we establish explicit inequalities for the performance of the algorithm.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Cesa-Bianchi, N., Freund, Y., Haussler, D., Helmbold, D.P., Schapire, R.E., Warmuth, M.K.: How to use expert advice. Journal of the Association for Computing Machinery 44, 427–485 (1997)

    MATH  MathSciNet  Google Scholar 

  2. Philip Dawid, A.: Calibration-based empirical probability (with discussion). Annals of Statistics 13, 1251–1285 (1985)

    Article  MathSciNet  Google Scholar 

  3. Philip Dawid, A.: Self-calibrating priors do not exist: Comment. Journal of the American Statistical Association 80, 340–341 (1985); This is a contribution to the discussion in [9]

    Google Scholar 

  4. Philip Dawid, A.: Probability forecasting. In: Kotz, S., Johnson, N.L., Read, C.B. (eds.) Encyclopedia of Statistical Sciences, vol. 7, pp. 210–218. Wiley, New York (1986)

    Google Scholar 

  5. Doob, J.L.: Stochastic Processes. Wiley, New York (1953)

    MATH  Google Scholar 

  6. Foster, D.P., Vohra, R.V.: Asymptotic calibration. Biometrika 85, 379–390 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  7. Kakade, S.M., Foster, D.P.: Deterministic calibration and nash equilibrium. In: Shawe-Taylor, J., Singer, Y. (eds.) COLT 2004. LNCS (LNAI), vol. 3120, pp. 33–48. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  8. Meschkowski, H.: Hilbertsche Räume mit Kernfunktion. Springer, Berlin (1962)

    MATH  Google Scholar 

  9. Oakes, D.: Self-calibrating priors do not exist (with discussion). Journal of the American Statistical Association 80, 339–342 (1985)

    Article  MATH  MathSciNet  Google Scholar 

  10. Schervish, M.J.: Contribution to the discussion in [2]. Annals of Statistics 13, 1274–1282 (1985)

    Article  Google Scholar 

  11. Schölkopf, B., Smola, A.J.: Learning with Kernels. MIT Press, Cambridge (2002)

    Google Scholar 

  12. Shafer, G., Vovk, V.: Probability and Finance: It’s Only a Game! Wiley, New York (2001)

    Book  Google Scholar 

  13. Steinwart, I.: On the influence of the kernel on the consistency of support vector machines. Journal of Machine Learning Research 2, 67–93 (2001)

    Article  MathSciNet  Google Scholar 

  14. Vapnik, V.N.: Statistical Learning Theory. Wiley, New York (1998)

    MATH  Google Scholar 

  15. Vovk, V.: Defensive prediction with expert advice. These Proceedings

    Google Scholar 

  16. Vovk, V.: Non-asymptotic calibration and resolution. Technical Report arXiv:cs.LG/0506004 (version 2), arXiv.org e-Print archive (July 2005), This is the full version of this paper, containing all proofs

    Google Scholar 

  17. Vovk, V., Takemura, A., Shafer, G.: Defensive forecasting. In: Cowell, R.G., Ghahramani, Z. (eds.) Proceedings of the Tenth International Workshop on Artificial Intelligence and Statistics, Savannah Hotel, Barbados, January 6–8. Society for Artificial Intelligence and Statistics, pp. 365–372 (2005); Available electronically at, http://www.gatsby.ucl.ac.uk/aistats/

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Vovk, V. (2005). Non-asymptotic Calibration and Resolution. In: Jain, S., Simon, H.U., Tomita, E. (eds) Algorithmic Learning Theory. ALT 2005. Lecture Notes in Computer Science(), vol 3734. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11564089_33

Download citation

  • DOI: https://doi.org/10.1007/11564089_33

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-29242-5

  • Online ISBN: 978-3-540-31696-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics