Skip to main content

Monotone Conditional Complexity Bounds on Future Prediction Errors

  • Conference paper
Algorithmic Learning Theory (ALT 2005)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 3734))

Included in the following conference series:

  • 2089 Accesses

Abstract

We bound the future loss when predicting any (computably) stochastic sequence online. Solomonoff finitely bounded the total deviation of his universal predictor M from the true distribution μ by the algorithmic complexity of μ. Here we assume we are at a time t>1 and already observed x=x 1...x t . We bound the future prediction performance on x t + 1 x t + 2... by a new variant of algorithmic complexity of μ given x, plus the complexity of the randomness deficiency of x. The new complexity is monotone in its condition in the sense that this complexity can only decrease if the condition is prolonged. We also briefly discuss potential generalizations to Bayesian model classes and to classification problems.

This work was supported by SNF grants 200020-107590/1 (to Jürgen Schmidhuber), 2100-67712 and 200020-107616.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Cilibrasi, R., Vitányi, P.M.B.: Clustering by compression. IEEE Trans. Information Theory 51(4), 1523–1545 (2005)

    Article  Google Scholar 

  2. Hutter, M., Muchnik, A.: Universal convergence of semimeasures on individual random sequences. In: Ben-David, S., Case, J., Maruoka, A. (eds.) ALT 2004. LNCS (LNAI), vol. 3244, pp. 234–248. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  3. Hutter, M.: Convergence and error bounds for universal prediction of nonbinary sequences. In: Proc. 12th Eurpean Conference on Machine Learning (ECML-2001), pp. 239–250 (December 2001)

    Google Scholar 

  4. Hutter, M.: Convergence and loss bounds for Bayesian sequence prediction. IEEE Trans. on Information Theory 49(8), 2061–2067 (2003)

    Article  MathSciNet  Google Scholar 

  5. Hutter, M.: Optimality of universal Bayesian prediction for general loss and alphabet. Journal of Machine Learning Research 4, 971–1000 (2003)

    Article  MathSciNet  Google Scholar 

  6. Hutter, M.: Sequence prediction based on monotone complexity. In: Schölkopf, B., Warmuth, M.K. (eds.) COLT/Kernel 2003. LNCS (LNAI), vol. 2777, pp. 506–521. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  7. Hutter, M.: Universal Artificial Intelligence: Sequential Decisions based on Algorithmic Probability, 300 pages. Springer, Berlin (2004), http://www.idsia.ch/~marcus/ai/uaibook.htm

  8. Li, M., Vitányi, P.M.B.: An introduction to Kolmogorov complexity and its applications, 2nd edn. Springer, Heidelberg (1997)

    MATH  Google Scholar 

  9. Poland, J., Hutter, M.: Convergence of discrete MDL for sequential prediction. In: Shawe-Taylor, J., Singer, Y. (eds.) COLT 2004. LNCS (LNAI), vol. 3120, pp. 300–314. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  10. Schmidhuber, J.: Algorithmic theories of everything. Report IDSIA-20-00, quant-ph/0011122, IDSIA, Manno (Lugano), Switzerland (2000)

    Google Scholar 

  11. Schmidhuber, J.: Hierarchies of generalized Kolmogorov complexities and nonenumerable universal measures computable in the limit. International Journal of Foundations of Computer Science 13(4), 587–612 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  12. Schmidhuber, J.: The speed prior: A new simplicity measure yielding near-optimal computable predictions. In: Kivinen, J., Sloan, R.H. (eds.) COLT 2002. LNCS (LNAI), vol. 2375, pp. 216–228. Springer, Heidelberg (2002)

    Chapter  Google Scholar 

  13. Solomonoff, R.J.: A formal theory of inductive inference: Part 1 and 2. Inform. Control 7, 1–22, 224–254 (1964)

    Google Scholar 

  14. Solomonoff, R.J.: Complexity-based induction systems: comparisons and convergence theorems. IEEE Trans. Information Theory IT-24, 422–432 (1978)

    Google Scholar 

  15. Uspensky, V.A., Shen, A.: Relations Between Varieties of Kolmogorov Complexities. Math. Systems Theory 29, 271–292 (1996)

    MATH  MathSciNet  Google Scholar 

  16. Vereshchagin, N.K., Shen, A., Uspensky, V.A.: Lecture Notes on Kolmogorov Complexity. Unpublished (2005), http://lpcs.math.msu.su/~ver/kolm-book

  17. Zvonkin, A.K., Levin, L.A.: The complexity of finite objects and the development of the concepts of information and randomness by means of the theory of algorithms. Russian Mathematical Surveys 25(6), 83–124 (1970)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Chernov, A., Hutter, M. (2005). Monotone Conditional Complexity Bounds on Future Prediction Errors. In: Jain, S., Simon, H.U., Tomita, E. (eds) Algorithmic Learning Theory. ALT 2005. Lecture Notes in Computer Science(), vol 3734. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11564089_32

Download citation

  • DOI: https://doi.org/10.1007/11564089_32

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-29242-5

  • Online ISBN: 978-3-540-31696-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics