Skip to main content

Obstruction-Free Step Complexity: Lock-Free DCAS as an Example

  • Conference paper
Distributed Computing (DISC 2005)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 3724))

Included in the following conference series:

Abstract

We propose obstruction-free step complexity, a new complexity measure for nonblocking algorithms. We believe that this measure provides a more pragmatic quanti.cation of nonblocking algorithms than previous measures, providing better guidance for designers of practical nonblocking algorithms.

In our opinion, the main shortcoming of existing complexity measures for nonblocking algorithms is that they are targeted towardsworst-case behavior inworstcase scenarios, and say little about behavior inmore common cases.This is true for the sensitivity measure of Attiya and Dagan [1], and the d-local step complexity of Afek et al. [2]. These measures are directed at evaluating the behavior of algorithms under contention, i.e., when concurrent operations actively interfere with each other’s progress. However, in practice, a well-designed system manages contention so that it does not impact performance too greatly. Thus, these previous measures do not evaluate the behaviour that is likely to be observed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Attiya, H., Dagan, E.: Improved implementations of binary universal operations. J. ACM 48, 1013–1037 (2001)

    Article  MathSciNet  Google Scholar 

  2. Afek, Y., Merritt, M., Taubenfeld, G., Touitou, D.: Disentangling multi-object oeprations. In: Proceedings of the 16th Annual ACM Symposium on Principles of Distributed Computing, pp. 111–120 (1997)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Fich, F.E., Luchangco, V., Moir, M., Shavit, N. (2005). Obstruction-Free Step Complexity: Lock-Free DCAS as an Example. In: Fraigniaud, P. (eds) Distributed Computing. DISC 2005. Lecture Notes in Computer Science, vol 3724. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11561927_37

Download citation

  • DOI: https://doi.org/10.1007/11561927_37

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-29163-3

  • Online ISBN: 978-3-540-32075-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics