Skip to main content

Compact Routing for Graphs Excluding a Fixed Minor

Extended Abstract

  • Conference paper
Distributed Computing (DISC 2005)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 3724))

Included in the following conference series:

Abstract

This paper concerns compact routing schemes with arbitrary node names. We present a compact name-independent routing scheme for unweighted networks with n nodes excluding a fixed minor. For any fixed minor, the scheme, constructible in polynomial time, has constant stretch factor and requires routing tables with poly-logarithmic number of bits at each node.

For shortest-path labeled routing scheme in planar graphs, we prove an Ω(n ε) space lower bound for some constant ε > 0. This lower bound holds even for bounded degree triangulations, and is optimal for polynomially weighted planar graphs (ε=1/2).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abraham, I., Gavoille, C., Malkhi, D.: Routing with improved communication-space trade-off. In: Guerraoui, R. (ed.) DISC 2004. LNCS, vol. 3274, pp. 305–319. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  2. Abraham, I., Gavoille, C., Malkhi, D.: Routing with improved communication-space trade-off. Tech. Report RR-1330-04, LaBRI, University of Bordeaux 1, 351, cours de la Liberation, 33405 Talence Cedex, France (July 2004)

    Google Scholar 

  3. Abraham, I., Gavoille, C., Malkhi, D., Nisan, N., Thorup, M.: Compact name-independent routing with minimum stretch. In: 16th Annual ACM Symposium on Parallel Algorithms and Architecture (SPAA). ACM PRESS, New York (2004)

    Google Scholar 

  4. Abraham, I., Malkhi, D.: Compact routing on euclidian metrics. In: Proceedings of the twenty-third annual ACM symposium on Principles of distributed computing (PODC), pp. 141–149. ACM Press, New York (2004)

    Chapter  Google Scholar 

  5. Abraham, I., Malkhi, D.: Name independent routing for growth bounded networks. In: 17th Annual ACM Symposium on Parallel Algorithms and Architecture (SPAA), ACM Press, New York (2005) (to appear)

    Google Scholar 

  6. Awerbuch, B., Peleg, D.: Sparse partitions. In: 31st Annual IEEE Symposium on Foundations of Computer Science (FOCS), pp. 503–513. IEEE Computer Society Press, Los Alamitos (1990)

    Google Scholar 

  7. Awerbuch, B., Peleg, D.: Routing with polynomial communication-space trade-off. SIAM J. Discret. Math. 5, 151–162 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  8. Bose, P., Morin, P.: Competitive online routing in geometric graphs. Theoretical Computer Science 324, 273–288 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  9. Bose, P., Morin, P.: Online routing in triangulations. SIAM Journal on Computing 33, 937–951 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  10. Chan, H.T.-H., Gupta, A., Maggs, B.M., Zhou, S.: On hierarchical routing in doubling metrics. In: 16th Symposium on Discrete Algorithms (SODA), January 2005. ACM/SIAM (2005)

    Google Scholar 

  11. Chepoi, V.D., Dragan, F.F., Vaxes, Y.: Distance and routing labeling schemes for non-positively curved plane graphs. Journal of Algorithms (2004) (to appear)

    Google Scholar 

  12. Chepoi, V.D., Rollin, A.: Interval routing in some planar quadrangulations. In: 8th International Colloquium on Structural Information & Communication Complexity (SIROCCO), June 2001, pp. 89–104. Carleton Scientific (2001)

    Google Scholar 

  13. DeVos, M., Ding, G., Oporowski, B., Sanders, D.P., Reed, B., Seymour, P.D., Vertigan, D.: Excluding any graph as a minor allows a low tree-width 2-coloring. Journal of Combinatorial Theory, Series B 91, 25–41 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  14. Dourisboure, Y.: Compact routing schemes for bounded tree-length graphs and for k-chordal graphs. In: Guerraoui, R. (ed.) DISC 2004. LNCS, vol. 3274, pp. 365–378. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  15. Dourisboure, Y., Gavoille, C.: Improved compact routing scheme for chordal graphs. In: Malkhi, D. (ed.) DISC 2002. LNCS, vol. 2508, pp. 252–264. Springer, Heidelberg (2002)

    Chapter  Google Scholar 

  16. Dragan, F.F., Lomonosov, I.: On compact and efficient routing in certain graph classes. In: Fleischer, R., Trippen, G. (eds.) ISAAC 2004. LNCS, vol. 3341, pp. 402–414. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  17. Eilam, T., Gavoille, C., Peleg, D.: Compact routing schemes with low stretch factor. Journal of Algorithms 46, 97–114 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  18. Flocchini, P., Luccio, F.L.: Routing in series parallel networks. Theory Comput. Syst. 36, 137–157 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  19. Frederickson, G.N., Janardan, R.: Efficient message routing in planar networks. SIAM Journal on Computing 18, 843–857 (1989)

    Article  MATH  MathSciNet  Google Scholar 

  20. Gavoille, C.: Routing in distributed networks: Overview and open problems. ACM SIGACT News - Distributed Computing Column 32, 36–52 (2001)

    Article  Google Scholar 

  21. Gavoille, C., Hanusse, N.: Compact routing tables for graphs of bounded genus. In: Wiedermann, J., Van Emde Boas, P., Nielsen, M. (eds.) ICALP 1999. LNCS, vol. 1644, pp. 351–360. Springer, Heidelberg (1999)

    Chapter  Google Scholar 

  22. Gavoille, C., Peleg, D.: Compact and localized distributed data structures. Journal of Distributed Computing 16, 111–120 (2003) PODC 20-Year Issue

    Article  Google Scholar 

  23. Gavoille, C., Peleg, D., Pérennès, S., Raz, R.: Distance labeling in graphs. Journal of Algorithms 53, 85–112 (2004)

    Article  MATH  Google Scholar 

  24. Gupta, A., Krauthgamer, R., Lee, J.R.: Bounded geometries, fractals, and low-distortion embeddings. In: 44th Annual IEEE Symposium on Foundations of Computer Science, pp. 534–543. IEEE Computer Society Press, Los Alamitos (2003)

    Google Scholar 

  25. Hassin, Y., Peleg, D.: Sparse communication networks and efficient routing in the plane. Distributed Computing 14, 205–215 (2001)

    Article  Google Scholar 

  26. Klein, P., Plotkin, S.A., Rao, S.: Excluded minors, network decomposition, and multicommodity flow. In: 25th Annual ACM Symposium on Theory of Computing (STOC), pp. 682–690. ACM Press, New York (1993)

    Google Scholar 

  27. Laing, K.A.: Brief announcement: name-independent compact routing in trees. In: 24th Annual ACM Symposium on Principles of Distributed Computing (PODC), pp. 382–382. ACM Press, New York (2004)

    Google Scholar 

  28. Lu, H.-I.: Improved compact routing tables for planar networks via orderly spanning trees. In: Ibarra, O.H., Zhang, L. (eds.) COCOON 2002. LNCS, vol. 2387, pp. 57–66. Springer, Heidelberg (2002)

    Chapter  Google Scholar 

  29. Nash-Williams, C.S.J.: Edge-disjoint spanning trees of finite graphs. J. London Math. Soc. 36, 445–450 (1961)

    Article  MATH  MathSciNet  Google Scholar 

  30. Peleg, D.: Distributed Computing: A Locality-Sensitive Approach. SIAM Monographs on Discrete Mathematics and Applications (2000)

    Google Scholar 

  31. Peleg, D.: Proximity-preserving labeling schemes. Journal of Graph Theory 33, 167–176 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  32. Peleg, D., Upfal, E.: A trade-off between space and efficiency for routing tables. Journal of the ACM 36, 510–530 (1989)

    Article  MATH  MathSciNet  Google Scholar 

  33. Slivkins, A.: Distance estimation and object location via rings of neighbors. In: 24th Annual ACM Symposium on Principles of Distributed Computing (PODC). ACM Press, New York (2005) (to appear), Also appears as Cornell CIS technical report TR2005-1977

    Google Scholar 

  34. Talwar, K.: Bypassing the embedding: Algorithms for low dimensional metrics. In: 36th Annual ACM Symposium on Theory of Computing (STOC), June 2004, pp. 281–290 (2004)

    Google Scholar 

  35. Thorup, M.: Compact oracles for reachability and approximate distances in planar digraphs. In: 42nd Annual IEEE Symposium on Foundations of Computer Science (FOCS), pp. 242–251. IEEE Computer Society Press, Los Alamitos (2001)

    Google Scholar 

  36. Thorup, M., Zwick, U.: Compact routing schemes. In: 13th Annual ACM Symposium on Parallel Algorithms and Architectures (SPAA), pp. 1–10. ACM Press, New York (2001)

    Google Scholar 

  37. West, D.B.: Introduction to Graph Theory, 2nd edn. Prentice Hall, Englewood Cliffs (2001)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Abraham, I., Gavoille, C., Malkhi, D. (2005). Compact Routing for Graphs Excluding a Fixed Minor. In: Fraigniaud, P. (eds) Distributed Computing. DISC 2005. Lecture Notes in Computer Science, vol 3724. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11561927_32

Download citation

  • DOI: https://doi.org/10.1007/11561927_32

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-29163-3

  • Online ISBN: 978-3-540-32075-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics