Skip to main content

Revisiting Failure Detection and Consensus in Omission Failure Environments

  • Conference paper

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 3722))

Abstract

It has recently been shown that fair exchange, a security problem in distributed systems, can be reduced to a fault tolerance problem, namely a special form of distributed consensus. The reduction uses the concept of security modules which reduce the type and nature of adversarial behavior to two standard fault-assumptions: message omission and process crash. In this paper, we investigate the feasibility of solving consensus in asynchronous systems in which crash and message omission faults may occur. Due to the impossibility result of consensus in such systems, following the lines of unreliable failure detectors of Chandra and Toueg, we add to the system a distributed device that gives information about the failure of other processes. Then we give an algorithm using this device to solve the consensus problem. Finally, we show how to implement such a device in an asynchronous system using some weak timing assumptions.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aguilera, M., Delporte-Gallet, C., Fauconnier, H., Toueg, S.: Stable leader election (extended abstract). In: Welch, J.L. (ed.) DISC 2001. LNCS, vol. 2180, pp. 108–122. Springer, Heidelberg (2001)

    Chapter  Google Scholar 

  2. Aguilera, M., Delporte-Gallet, C., Fauconnier, H., Toueg, S.: Communication-efficient leader election and consensus with limited link synchrony. In: 23rd ACM Symposium on Principles of Distributed Computing (PODC), St. Johns, Newfoundland, Canada, pp. 328–337 (2004)

    Google Scholar 

  3. Aguilera, M.K., Delporte-Gallet, C., Fauconnier, H., Toueg, S.: On implementing Omega with weak reliability and synchrony assumptions. In: 22nd ACM Symposium on Principles of Distributed Computing (PODC), pp. 306–314 (2003)

    Google Scholar 

  4. Avoine, G., Gärtner, F.C., Guerraoui, R., Vukolic, M.: Gracefully degrading fair exchange with security modules. In: Dal Cin, M., Kaâniche, M., Pataricza, A. (eds.) EDCC 2005. LNCS, vol. 3463, pp. 55–71. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  5. Chandra, T.D., Hadzilacos, V., Toueg, S.: The weakest failure detector for solving consensus. J. ACM 43(4), 685–722 (1996)

    MATH  MathSciNet  Google Scholar 

  6. Chandra, T.D., Toueg, S.: Unreliable failure detectors for reliable distributed systems. J. ACM 43(2), 225–267 (1996)

    MATH  MathSciNet  Google Scholar 

  7. Delporte-Gallet, C., Fauconnier, H., Freiling, F.C.: Revisiting failure detection and consensus in omission failure environments. Technical Report AIB-2005-13, RWTH Aachen (June 2005)

    Google Scholar 

  8. Dolev, D., Friedman, R., Keidar, I., Malkhi, D.: Failure detectors in omission failure environments. Technical Report TR96-1608, Cornell University, Computer Science Department (September 1996)

    Google Scholar 

  9. Dolev, D., Friedmann, R., Keidar, I., Malkhi, D.: Failure detectors in omission failure environments (brief announcement). In: 16th ACM Symposium on Principles of Distributed Computing, PODC (1997)

    Google Scholar 

  10. Dwork, C., Lynch, N.A., Stockmeyer, L.: Consensus in the presence of partial synchrony. J. ACM 35(2), 288–323 (1988)

    MathSciNet  Google Scholar 

  11. Fischer, M.J., Lynch, N.A., Paterson, M.S.: Impossibility of distributed consensus with one faulty process. J. ACM 32(2), 374–382 (1985)

    MATH  MathSciNet  Google Scholar 

  12. Hadzilacos, V.: Issues of Fault Tolerance in Concurrent Computations. PhD thesis, Harvard University, also published as Technical Report TR11-84 (1984)

    Google Scholar 

  13. Liu, Z., Joseph, M.: Specification and verification of fault-tolerance, timing and scheduling. ACM Transactions on Programming Languages and Systems 21(1), 46–89 (1999)

    Article  Google Scholar 

  14. Mostéfaoui, A., Mourgaya, E., Raynal, M.: Asynchronous implementation of failure detectors. In: Dependable Systems and Networks (DSN), pp. 351–360. IEEE Computer Society, Los Alamitos (2003)

    Google Scholar 

  15. Nestmann, U., Fuzzati, R.: Unreliable failure detectors via operational semantics. In: Saraswat, V.A. (ed.) ASIAN 2003. LNCS, vol. 2896, pp. 54–71. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  16. Perry, K.J., Toueg, S.: Distributed agreement in the presence of processor and communication faults. IEEE Transactions on Software Engineering 12(3), 477–482 (1986)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Delporte-Gallet, C., Fauconnier, H., Freiling, F.C. (2005). Revisiting Failure Detection and Consensus in Omission Failure Environments. In: Van Hung, D., Wirsing, M. (eds) Theoretical Aspects of Computing – ICTAC 2005. ICTAC 2005. Lecture Notes in Computer Science, vol 3722. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11560647_26

Download citation

  • DOI: https://doi.org/10.1007/11560647_26

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-29107-7

  • Online ISBN: 978-3-540-32072-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics