Skip to main content

The Architecture of a Proteomic Network in the Yeast

  • Conference paper
Computational Life Sciences (CompLife 2005)

Part of the book series: Lecture Notes in Computer Science ((LNBI,volume 3695))

Included in the following conference series:

Abstract

We describe an approach to clustering the yeast protein-protein interaction network in order to identify functional modules, groups of proteins forming multi-protein complexes accomplishing various functions in the cell. We have developed a clustering method that accounts for the small-world nature of the network. The algorithm makes use of the concept of k-cores in a graph, and employs recursive spectral clustering to compute the functional modules. The computed clusters are annotated using their protein memberships into known multi-protein complexes in the yeast. We also dissect the protein interaction network into a global subnetwork of hub proteins (connected to several clusters), and a local network consisting of cluster proteins.

Research supported by NSF grant CCR0306334, by subcontract B542604 from the Lawrence Livermore National Laboratory, and by a grant from the Office of Research at Old Dominion University.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Gavine, A.-C., Bosche, M., Krause, R., et al.: Functional organization of the yeast proteome by systematic analysis of protein complexes. Nature 415, 141–147 (2002)

    Article  Google Scholar 

  2. Achsel, T., et al.: The Sm domain is an ancient RNA-binding motif with oligo(U) specificity. Procs. Natl. Acad. Sci. 98, 3685–3689 (2001)

    Article  Google Scholar 

  3. Angenstein, F., et al.: A receptor for activated C kinase is part of messenger ribonucleoprotein complexes associated with polyA-mRNA in neurons. J. Neurosci. 22, 8827–8837 (2002)

    Google Scholar 

  4. Bader, G.D., Hogue, C.W.: An automated method for finding molecular complexes in large protein interaction networks. BMC Bioinformatics 4(2), 27 (2003)

    Google Scholar 

  5. Bi, X., Goss, D.: Wheat germ poly (A)-binding protein increases ATPase and the RNA helicase activity of translation initiation factors eIF4A, eIF4B and eIF-iso-4F. J. Biol. Chem. 275, 17740–17746 (2000)

    Article  Google Scholar 

  6. Bornholdt, S., Schuster, H.G. (eds.): Handbook of Graphs and Networks. Wiley VCH, Chichester (2003)

    MATH  Google Scholar 

  7. Chung, F., Lu, L.: The average distances in random graphs with given expected degrees. Procs. Natl. Acad. Sci. 99(25), 15879–15882 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  8. Dhillon, I.S.: Co-clustering documents and words using bipartite spectral graph partitioning. In: Procs. ACM Internatl. Conf. Knowledge Discovery in Data Mining (KDD) (2001)

    Google Scholar 

  9. Ding, C., He, X., Meraz, R.F., Holbrook, S.R.: A unified representation of multi-protein complex data for modeling interaction networks. Proteins: Structure, Function, and Genetics (2004) (to appear)

    Google Scholar 

  10. Ding, C., He, X., Zha, H., Gu, M., Simon, H.: A MinMaxCut spectral method for data clustering and graph partitioning. In: Procs. IEEE Internatl. Conf. Data Mining (ICDM), pp. 107–114 (2001)

    Google Scholar 

  11. Fromont-Racine, M., et al.: Genome-wide protein interaction screens reveal functional networks involving Sm-like proteins. Yeast 17, 95–110 (2000)

    Article  Google Scholar 

  12. Galisson, F., Legrain, P.: The biochemical defects of PRP4-1 and PRP6-1 yeast splicing mutants reveal that the PRP6 protein is required for the accumulation of the [U4/U6.U5] tri-snRNP. Nucl. Acids Res. 21, 1555–1562 (1993)

    Article  Google Scholar 

  13. Han, J.D.J., Dupuy, D., Bertin, N., et al.: Effect of sampling on topology predictions of protein-protein interaction networks. Nature Biotechnology 23, 839–844 (2005)

    Article  Google Scholar 

  14. Hartwell, L.H., Hopfeld, J.J., Leibler, S., Murray, A.W.: From molecular to modular cell biology. Nature 402, C47–C52 (1999)

    Article  Google Scholar 

  15. Ho, Y., Gruhler, A., Heilbut, A., et al.: Systematic identification of protein complexes in Saccharomyces cerevisiae by mass spectrometry. Nature 415, 180–193 (2002)

    Article  Google Scholar 

  16. Ito, T., Chiba, T., Ozawa, R., et al.: A comprehensive two hybrid analysis to explore the yeast protein interactome. Procs. Natl. Acad. Sci. 98, 4569–4574 (2001)

    Article  Google Scholar 

  17. Jarvis, A.A., Patrick, E.A.: Clustering based on a similarity measure based on shared nearest neighbors. IEEE Trans. Computers C-22, 1025–1034 (1973)

    Article  Google Scholar 

  18. Noble, C., et al.: Rna14-Rna15 assembly mediates the RNA-binding capability of Saccharomyces cerevisiae cleavage factor IA. Nucl. Acids Res. 32, 3364–3375 (2004)

    Article  Google Scholar 

  19. Ramadan, E., Tarafdar, A., Pothen, A.: A hypergraph model for the yeast protein complex network. In: Procs. Workshop High Performance Computational Biology (HICOMB), p. 8. IEEE / ACM, Los Alamitos (2004) (CDROM)

    Google Scholar 

  20. Rymond, B.C.: Convergent transcripts of the yeast PRP38-SMD1 locus encode two essential splicing factors, including the D1 core polypeptide of small nuclear ribonucleoprotein particles. Procs. Natl. Acad. Sci. 90, 848–852 (1993)

    Article  Google Scholar 

  21. Spirin, V., Mirny, L.A.: Protein complexes and functional modules in molecular networks. Procs. Natl. Acad. Sci. 100, 12123–12128 (2003)

    Article  Google Scholar 

  22. Tan, P., Steinbach, M., Kumar, V.: Introduction to Datamining. Addison Wesley, Reading (2005)

    Google Scholar 

  23. Urushiyama, S., et al.: The prp1+ gene required for pre-mRNA splicing in Schizosaccharomyces pombe encodes a protein that contains TPR motifs and is similar to Prp6p of budding yeast. Genetics 147, 101–115 (1997)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Ramadan, E., Osgood, C., Pothen, A. (2005). The Architecture of a Proteomic Network in the Yeast. In: R. Berthold, M., Glen, R.C., Diederichs, K., Kohlbacher, O., Fischer, I. (eds) Computational Life Sciences. CompLife 2005. Lecture Notes in Computer Science(), vol 3695. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11560500_24

Download citation

  • DOI: https://doi.org/10.1007/11560500_24

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-29104-6

  • Online ISBN: 978-3-540-31726-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics