Skip to main content

Bayesian Kernel Learning Methods for Parametric Accelerated Life Survival Analysis

  • Conference paper
  • 2297 Accesses

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 3635))

Abstract

Survival analysis is a branch of statistics concerned with the time elapsing before “failure”, with diverse applications in medical statistics and the analysis of the reliability of electrical or mechanical components. In this paper we introduce a parametric accelerated life survival analysis model based on kernel learning methods that, at least in principal, is able to learn arbitrary dependencies between a vector of explanatory variables and the scale of the distribution of survival times. The proposed kernel survival analysis method is then used to model the growth domain of Clostridium botulinum, that is the food processing and storage conditions permitting the growth of this foodborne microbial pathogen, leading to the production of the neurotoxin responsible for botulism. A Bayesian training procedure, based on the evidence framework, is used for model selection and to provide a credible interval on model predictions. The kernel survival analysis models are found to be more accurate than models based on more traditional survival analysis techniques, but also suggest a risk assessment of the foodborne botulism hazard would benefit from the collection of additional data.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Cox, D.R., Oakes, D.: Analysis of Survival Data. Monographs on Statistics and Applied Probability, vol. 21. Chapman and Hall, Boca Raton (1984)

    Google Scholar 

  2. MacKay, D.J.C.: Bayesian interpolation. Neural Computation 4, 415–447 (1992)

    Article  Google Scholar 

  3. MacKay, D.J.C.: A practical Bayesian framework for backprop networks. Neural Computation 4, 448–472 (1992)

    Article  Google Scholar 

  4. MacKay, D.J.C.: The evidence framework applied to classification networks. Neural Computation 4, 720–736 (1992)

    Article  Google Scholar 

  5. Tikhonov, A.N., Arsenin, V.Y.: Solutions of ill-posed problems. John Wiley, New York (1977)

    MATH  Google Scholar 

  6. Geman, S., Bienenstock, E., Doursat, R.: Neural networks and the bias/variance dilemma. Neural Computation 4, 1–58 (1992)

    Article  Google Scholar 

  7. Mercer, J.: Functions of positive and negative type and their connection with the theory of integral equations. Philosophical Transactions of the Royal Society of London, A 209, 415–446 (1909)

    Article  Google Scholar 

  8. Aronszajn, N.: Theory of reproducing kernels. Transactions of the American Mathematical Society 68, 337–404 (1950)

    Article  MATH  MathSciNet  Google Scholar 

  9. Cristianini, N., Shawe-Taylor, J.: An Introduction to Support Vector Machines (and other kernel-based learning methods). Cambridge University Press, Cambridge (2000)

    Google Scholar 

  10. Schölkopf, B., Smola, A.J.: Learning with kernels - support vector machines, regularization, optimization and beyond. MIT Press, Cambridge (2002)

    Google Scholar 

  11. Kimeldorf, G.S., Wahba, G.: Some results on Tchebycheffian spline functions. J. Math. Anal. Applic. 33, 82–95 (1971)

    Article  MATH  MathSciNet  Google Scholar 

  12. Schölkopf, B., Herbrich, R., Smola, A.J.: A generalised representer theorem. In: Proceedings of the Fourteenth International Conference on Computational Learning Theory, Amsterdam, The Netherlands, pp. 416–426 (2001)

    Google Scholar 

  13. Fletcher, R.: Practical Methods of Optimization, 2nd edn. John Wiley and Sons, Chichester (2000)

    Google Scholar 

  14. Micchelli, C.A.: Interpolation of scattered data: Distance matrices and conditionally positive definite functions. Constructive Approximation 2, 11–22 (1986)

    Article  MATH  MathSciNet  Google Scholar 

  15. Fine, S., Scheinberg, K.: Efficient SVM training using low-rank kernel representations. Journal of Machine Learning Research 2, 243–264 (2001)

    Article  Google Scholar 

  16. Golub, G.H., Van Loan, C.F.: Matrix Computations, 3rd edn. The Johns Hopkins University Press, Baltimore (1996)

    MATH  Google Scholar 

  17. Baudat, G., Anouar, F.: Kernel-based methods and function approximation. In: Proc. IJCNN, Washington, DC, pp. 1244–1249 (2001)

    Google Scholar 

  18. Stone, M.: Cross-validatory choice and assessment of statistical predictions. Journal of the Royal Statistical Society B 36, 111–147 (1974)

    MATH  Google Scholar 

  19. Luntz, A., Brailovsky, V.: On estimation of characters obtained in statistical procedure of recognition (in Russian). Techicheskaya Kibernetica 3 (1969)

    Google Scholar 

  20. Nelder, J.A., Mead, R.: A simplex method for function minimization. Computer Journal 7, 308–313 (1965)

    MATH  Google Scholar 

  21. Buntine, W.L., Weigend, A.S.: Bayesian back-propagation. Complex Systems 5, 603–643 (1991)

    MATH  Google Scholar 

  22. Bishop, C.M.: Neural Networks for Pattern Recognition. Oxford University Press, Oxford (1995)

    Google Scholar 

  23. Neal, R.M.: Bayesian learning for neural networks. Lecture Notes in Statistics. Springer, Heidelberg (1996)

    MATH  Google Scholar 

  24. MacKay, D.J.C.: Hyperparameters: optimise or integrate out? In: Heidbreder, G. (ed.) Maximum Entropy and Bayesian Methods. Kluwer, Dordrecht (1994)

    Google Scholar 

  25. Lund, B.M., Peck, M.W.: Clostridium botulinum. In: Lund, B.M., Baird-Parker, A.C., Gould, G.W. (eds.) The Microbiological Safety and Quality of Food, Aspen, Gaithersburg, USA, pp. 1057–1109 (2000)

    Google Scholar 

  26. Peck, M.W.: Clostridium botulinum and the safety of refrigerated processed foods of extended durability. Trends in Food Science and Technology 8, 186–192 (1997)

    Article  Google Scholar 

  27. Fernández, P.S., Peck, M.W.: A predictive model that describes the effect of prolonged heating at 70 − 80° C and incubation at refrigeration temperatures on growth and toxigenesis by non-proteolytic Clostridium botulinum. Journal of Food Protection 60, 1064–1071 (1997)

    Google Scholar 

  28. Peck, M.W., Lund, B.M., Fairbairn, D.A., Kassperson, A.S., Undeland, P.C.: Effect of heat treatment on survival of, and growth from, spores of non-proteolytic Clostridium botulinum at refrigeration temperatures. Applied and Environmental Microbiology 61, 1780–1785 (1995)

    Google Scholar 

  29. Stringer, S.C., Haque, N., Peck, M.W.: Growth from spores of non-proteolytic Clostridium botulinum in heat treated vegetable juice. Applied and Environmental Microbiology 65, 2136–2142 (1999)

    Google Scholar 

  30. Carlin, F., Peck, M.W.: Growth and toxin production by non-proteolytic and proteolytic Clostridium botulinum in cooked vegetables. Letters in Applied Microbiology 20, 152–156 (1995)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Cawley, G.C., Talbot, N.L.C., Janacek, G.J., Peck, M.W. (2005). Bayesian Kernel Learning Methods for Parametric Accelerated Life Survival Analysis. In: Winkler, J., Niranjan, M., Lawrence, N. (eds) Deterministic and Statistical Methods in Machine Learning. DSMML 2004. Lecture Notes in Computer Science(), vol 3635. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11559887_3

Download citation

  • DOI: https://doi.org/10.1007/11559887_3

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-29073-5

  • Online ISBN: 978-3-540-31728-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics