Skip to main content

Morse Connections Graph for Shape Representation

  • Conference paper
Advanced Concepts for Intelligent Vision Systems (ACIVS 2005)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 3708))

Abstract

We present an algorithm for constructing efficient topological shape descriptors of three dimensional objects. Given a smooth surface S and a Morse function f defined on S, our algorithm encodes the relationship among the critical points of the function f by means of a connection graph, called the Morse Connections Graph, whose nodes represent the critical points of f. Two nodes are related by an edge if a connection is established between them. This graph structure is extremely suitable for shape comparison and shape matching and inherits the invariant properties of the given Morse function f.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Allili, M., Corriveau, D., Ziou, D.: Morse Homology Descriptor for Shape Characterization. In: 17th International Conference on Pattern Recognition, vol. 4, pp. 27–30 (2004)

    Google Scholar 

  2. Fomenko, A., Kunii, T.: Topological Modeling for Visualization. Springer, Tokyo (1997) ISBN: 4-431-70200-8

    MATH  Google Scholar 

  3. Milnor, J.: Morse Theory. Princeton University Press, Princeton (1969) ISBN: 0-691-08008-9

    Google Scholar 

  4. Mischaikow, K.: The Conley Index Theory: A Brief Introduction  47. Banach Center Publications (1999)

    Google Scholar 

  5. Munkres, J.R.: Elements of Algebraic Topology. Addison-Wesley, Reading (1984) ISBN: 0-201-04586-9

    MATH  Google Scholar 

  6. Kaczynski, T., Mischaikow, K., Mrozek, M.: Computational Homology. Math. Sci. Series, vol. 157. Springer, New York (2004) ISBN: 0-387-40853-3

    MATH  Google Scholar 

  7. Thom, R.: Sur une partition en cellules associée à une fonction sur une variété. Comptes Rendus de l’Académie de Sciences 228, 973–975 (1949)

    MATH  MathSciNet  Google Scholar 

  8. Shinagawa, Y., Kunii, T.: Constructing a Reeb Graph Automatically from Cross Sections. IEEE Comp. Graph. and Appl. 11, 44–51 (1991)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Corriveau, D., Allili, M., Ziou, D. (2005). Morse Connections Graph for Shape Representation. In: Blanc-Talon, J., Philips, W., Popescu, D., Scheunders, P. (eds) Advanced Concepts for Intelligent Vision Systems. ACIVS 2005. Lecture Notes in Computer Science, vol 3708. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11558484_28

Download citation

  • DOI: https://doi.org/10.1007/11558484_28

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-29032-2

  • Online ISBN: 978-3-540-32046-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics